Deep Learning for Beginners A Beginner's Guide to Getting up and Running with Deep Learning from Scratch Using Python

This book is for beginners who are looking for a strong foundation to build deep learning models from scratch. You will test your understanding of the concepts and measure your progress at the end of each chapter. You will have a firm understanding of deep learning and will be able to identify which...

Full description

Saved in:
Bibliographic Details
Main Author Rivas, Pablo
Format eBook
LanguageEnglish
Published Birmingham Packt Publishing, Limited 2020
Packt Publishing Limited
Packt Publishing
Edition1
Subjects
Online AccessGet full text
ISBN1838640851
9781838640859
DOI10.0000/9781838647582

Cover

Abstract This book is for beginners who are looking for a strong foundation to build deep learning models from scratch. You will test your understanding of the concepts and measure your progress at the end of each chapter. You will have a firm understanding of deep learning and will be able to identify which algorithms are appropriate for different tasks.
AbstractList Implementing supervised, unsupervised, and generative deep learning (DL) models using Keras, TensorFlow, and PyTorch Key FeaturesUnderstand the fundamental machine learning concepts useful in deep learningLearn the underlying mathematical and statistical concepts as you implement smart deep learning models from scratchExplore easy-to-understand examples and use cases that will help you build a solid foundation in DLBook DescriptionWith information on the web exponentially increasing, it has become more difficult than ever to navigate through everything to find reliable content that will help you get started with deep learning (DL). This book is designed to help you if you're a beginner looking to work on deep learning and build deep learning models from scratch, and already have the basic mathematical and programming knowledge required to get started.The book begins with a basic overview of machine learning, guiding you through setting up popular Python frameworks. You will also understand how to prepare data by cleaning and preprocessing it for deep learning, and gradually go on to explore neural networks. A dedicated section will give you insights into the working of neural networks by helping you get hands-on with training single and multiple layers of neurons. Later, you will cover popular neural network architectures such as CNNs, RNNs, AEs, VAEs, and GANs with the help of simple examples and even build models from scratch. At the end of each chapter, you will find a question and answer section to help you test what you've learned through the course of the book.By the end of this book, you'll be well-versed with deep learning concepts and have the knowledge you need to use specific algorithms with various tools for different tasks.What you will learnImplement recurrent neural networks (RNNs) and long short-term memory networks (LSTMs) in image classification and NLPUnderstand the mathematical terminology associated with DL algorithmsExplore the role of convolutional neural networks (CNNs) in computer vision and signal processingUnderstand the ethical implications of DL modelingCode a generative adversarial network (GAN) and a variational autoencoder (VAE) to generate images from a learned latent spaceImplement visualization techniques to compare deep and variational autoencodersWho This Book Is ForThis book is for aspiring data scientists and deep learning engineers who want to get started with the fundamentals of deep learning and neural networks. Although no prior knowledge of deep learning or machine learning is required, familiarity with linear algebra and Python programming is necessary to get started.
This book is for beginners who are looking for a strong foundation to build deep learning models from scratch. You will test your understanding of the concepts and measure your progress at the end of each chapter. You will have a firm understanding of deep learning and will be able to identify which algorithms are appropriate for different tasks.
Author Rivas, Pablo
Author_xml – sequence: 1
  fullname: Rivas, Pablo
BookMark eNplj0lPwzAQRo1YBC09cuKSG-IQ8BLH9pGGskiRuMA5cuxxKA1OsdNW_HsiyiLEXGae9OaTvhHa850HhE4IvsDDXCohiWQyzwSXdAeNfkDtfgOWnBwMQDHNcpzL7BBNYnwZvhmhA_IjdHoNsExK0MHPfZO4LiRTaObeQ4jHaN_pNsLka4_R083ssbhLy4fb--KqTDURFPNUYc7AQA5WAVAmrXPCGSWtymvHuOAWKKlBUWqgpkJoV1vAzAhjM6aBjdH5NlfHBWzic9f2sVq3UHfdIlZ_ev66G932ECw0YfU-HNWrDuafe7Z1l6F7W0Hsq89IA74Puq1m0yJnnHMq2QdrnF9k
ContentType eBook
DEWEY 006.31
DOI 10.0000/9781838647582
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1838647589
9781838647582
Edition 1
1st edition
ExternalDocumentID 9781838647582
EBC6355528
GroupedDBID -VX
38.
4S.
AABBV
AAFKH
AAKGN
AANYM
AAXUV
AAZEP
AAZGR
ABIWA
ABMRC
ABRSK
ABWNX
ACBYE
ACIWJ
ACMFT
ACXXF
ADBND
AECLD
AEDWI
AEHEP
AEIUR
AEMZR
AETWE
AFQEX
AHWGJ
ALMA_UNASSIGNED_HOLDINGS
APVFW
ATDNW
BBABE
BPBUR
CMZ
CZZ
DUGUG
DYXOI
E2F
EBSCA
ESHEC
IHRAH
K-E
KT4
L7C
NEJRU
OHILO
OODEK
PASLL
QD8
TD3
UE6
-VQ
5O.
ACNAM
BJTYN
C~C
ECOWB
O7H
XI1
YSPEL
ID FETCH-LOGICAL-a17205-9053ece6ed9ee238dff7fc98d96bf3575de21be922ceb277afbde03c7cd43ae3
ISBN 1838640851
9781838640859
IngestDate Fri Nov 08 04:22:54 EST 2024
Sat Oct 25 00:36:49 EDT 2025
Sat Oct 25 03:40:24 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCallNum_Ident Q325.5 .R583 2020
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a17205-9053ece6ed9ee238dff7fc98d96bf3575de21be922ceb277afbde03c7cd43ae3
OCLC 1202460684
PQID EBC6355528
PageCount 416
ParticipantIDs askewsholts_vlebooks_9781838647582
walterdegruyter_marc_9781838647582
proquest_ebookcentral_EBC6355528
PublicationCentury 2000
PublicationDate 2020
[2020]
2020-09-18
PublicationDateYYYYMMDD 2020-01-01
2020-09-18
PublicationDate_xml – year: 2020
  text: 2020
PublicationDecade 2020
PublicationPlace Birmingham
PublicationPlace_xml – name: Birmingham
– name: Birmingham, UK
PublicationYear 2020
Publisher Packt Publishing, Limited
Packt Publishing Limited
Packt Publishing
Publisher_xml – name: Packt Publishing, Limited
– name: Packt Publishing Limited
– name: Packt Publishing
RestrictionsOnAccess restricted access
SSID ssj0003126845
Score 2.1859448
Snippet This book is for beginners who are looking for a strong foundation to build deep learning models from scratch. You will test your understanding of the concepts...
Implementing supervised, unsupervised, and generative deep learning (DL) models using Keras, TensorFlow, and PyTorch Key FeaturesUnderstand the fundamental...
SourceID askewsholts
walterdegruyter
proquest
SourceType Aggregation Database
Publisher
SubjectTerms COM004000 COMPUTERS / Intelligence (AI) & Semantics
COMPUTERS / Data Modeling & Design
COMPUTERS / Neural Networks
Machine learning
Subtitle A Beginner's Guide to Getting up and Running with Deep Learning from Scratch Using Python
TableOfContents Introducing deep belief networks -- Making deep autoencoders -- Batch normalization -- Dropout -- Exploring latent spaces with deep autoencoders -- CIFAR-10 -- MNIST -- Summary -- Questions and answers -- References -- Chapter 9: Variational Autoencoders -- Introducing deep generative models -- Examining the VAE model -- The heart disease dataset revisited -- The re-parametrization trick and sampling -- Learning the posterior's parameters in the encoder -- Modeling the decoder -- Minimizing the loss -- Training a VAE -- Generating data from the VAE -- Comparing a deep and shallow VAE on MNIST -- Shallow VAE -- Deep VAE -- Encoder -- Decoder -- Denoising VAEs -- Thinking about the ethical implications of generative models -- Summary -- Questions and answers -- References -- Chapter 10: Restricted Boltzmann Machines -- Introduction to RBMs -- BMs -- RBMs -- Bernoulli RBMs -- Learning data representations with RBMs -- Comparing RBMs and AEs -- Summary -- Questions and answers -- References -- Section 3: Supervised Deep Learning -- Chapter 11: Deep and Wide Neural Networks -- Wide neural networks -- Deep learning revisited -- Wide layers -- Summaries -- Names -- The CIFAR-10 dataset -- New training tools -- Saving or loading models -- Reducing the learning rate on the fly -- Stopping the learning process early -- Results -- Dense deep neural networks -- Building and training the model -- Results -- Sparse deep neural networks -- Building a sparse network and training it -- Results -- Hyperparameter optimization -- Libraries and parameters -- Implementation and results -- Summary -- Questions and answers -- References -- Chapter 12: Convolutional Neural Networks -- Introduction to convolutional neural networks -- Convolution in n-dimensions -- 1-dimension -- 2-dimensions -- n-dimensions -- Convolutional layers -- Conv2D -- The layer+activation combo
Cover -- Title Page -- Copyright and Credits -- About Packt -- Foreword -- Contributors -- Table of Contents -- Preface -- Section 1: Getting Up to Speed -- Chapter 1: Introduction to Machine Learning -- Diving into the ML ecosystem -- Training ML algorithms from data -- Introducing deep learning -- The model of a neuron -- The perceptron learning algorithm -- Shallow networks -- The input-to-hidden layer -- The hidden-to-hidden layer -- The hidden-to-output layer -- Deep networks -- Why is deep learning important today? -- Summary -- Questions and answers -- References -- Chapter 2: Setup and Introduction to Deep Learning Frameworks -- Introduction to Colaboratory -- Introduction and setup of TensorFlow -- Setup -- TensorFlow with GPU support -- Principles behind TensorFlow -- Introduction and setup of Keras -- Setup -- Principles behind Keras -- Introduction to PyTorch -- Introduction to Dopamine -- Other deep learning libraries -- Caffe -- Theano -- Honorable mentions -- Summary -- Questions and answers -- References -- Chapter 3: Preparing Data -- Binary data and binary classification -- Binary targets on the Cleveland Heart Disease dataset -- Binarizing the MNIST dataset -- Binarizing the images -- Binarizing the targets -- Categorical data and multiple classes -- Converting string labels to numbers -- Converting categories to one-hot encoding -- Real-valued data and univariate regression -- Scaling to a specific range of values -- Standardizing to zero mean and unit variance -- Altering the distribution of data -- Data augmentation -- Rescaling -- Adding noise -- Rotating -- Other augmentation techniques -- Data dimensionality reduction -- Supervised algorithms -- Linear discriminant analysis -- Unsupervised techniques -- Kernel PCA -- Large datasets -- Sparse PCA -- Dictionary Learning -- Regarding the number of dimensions
Ethical implications of manipulating data -- Summary -- Questions and answers -- References -- Chapter 4: Learning from Data -- Learning for a purpose -- Classification -- Binary classification -- Multi-class classification -- Regression -- Measuring success and error -- Binary classification -- Multiple classes -- Regression -- Identifying overfitting and generalization -- If we have test data -- No test data? No problem - cross-validate -- The art behind learning -- Ethical implications of training deep learning algorithms -- Reporting using the appropriate performance measures -- Being careful with outliers and verifying them -- Weight classes with undersampled groups -- Summary -- Questions and answers -- References -- Chapter 5: Training a Single Neuron -- The perceptron model -- The visual concept -- Tensor operations -- The perceptron learning algorithm -- PLA in Python -- A perceptron over non-linearly separable data -- Convergence on linearly separable data -- Convergence on non-linearly separable data -- Summary -- Questions and answers -- References -- Chapter 6: Training Multiple Layers of Neurons -- The MLP model -- Minimizing the error -- Step 1 - Initialization -- Step 2 - The forward pass -- Step 3 - Calculating loss -- Step 4 - The backward pass -- Finding the best hyperparameters -- Summary -- Questions and answers -- References -- Section 2: Unsupervised Deep Learning -- Chapter 7: Autoencoders -- Introduction to unsupervised learning -- Encoding and decoding layers -- Encoding layers -- Decoding layers -- Loss function -- Learning and testing -- Applications in dimensionality reduction and visualization -- MNIST data preparation -- Autoencoders for MNIST -- Training and visualization -- Ethical implications of unsupervised learning -- Summary -- Questions and answers -- References -- Chapter 8: Deep Autoencoders
Pooling strategies -- Convolutional neural network for CIFAR-10 -- Implementation -- Loading data -- Compiling the model -- Training the CNN -- Results -- Visualization of filters -- Summary -- Questions and answers -- References -- Chapter 13: Recurrent Neural Networks -- Introduction to recurrent neural networks -- Simple RNNs -- Embedding layers -- Word embedding and RNNs on IMDb -- Long short-term memory models -- Sequence-to-vector models -- Unsupervised model -- Results -- Vector-to-sequence models -- Bi-directional LSTM -- Implementation and results -- Sequence-to-sequence models -- Ethical implications -- Summary -- Questions and answers -- References -- Chapter 14: Generative Adversarial Networks -- Introducing adversarial learning -- Learning using an adversary -- GANs -- Training a GAN -- An MLP model -- A convolutional model -- Comparing GANs and VAEs -- Thinking about the ethical implications of GANs -- Summary -- Questions and answers -- References -- Chapter 15: Final Remarks on the Future of Deep Learning -- Looking for advanced topics in deep learning -- Deep reinforcement learning -- Self-supervised learning -- System 2 algorithms -- Learning with more resources from Packt -- Reinforcement learning -- Self-supervised learning -- Summary -- References -- Other Books You May Enjoy -- Index
Deep Learning for Beginners: A beginner's guide to getting up and running with deep learning from scratch using Python
Title Deep Learning for Beginners
URI https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=6355528
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781838647582
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB60vdiDu1irEsRrajKTba5dRISKSAXxEmYyLyItVdpY0V_vm2xtqgf1EpLZQuabvGXeMoScW8qzlVDaKQyk6UAgTQ6BY9qxo2iMPIKn3u6DG-_q3rl-cB8WZ9Sl0SWJbEefP8aV_AdVLENcdZTsH5AtB8UCvEd88YoI43VF-C0fM3B7AK9FatTMEbKjD1iYwMI2c_c8F3kSfjl--Vbam7aXanK1n1orav-tiEbJ8lZVNR4qUw_xdw08BzUC-hOx1Kwq84-otqsmpV5hFqULX6XbOqlTB2UvbSwfPJZ7XMzWuWTcLLWpft1FpVeDNMRshLQc6Xwyq4j4m--ps4CCp-nbR1IYp1OeP9wmddCBIDtkDSa7ZKs4_sLIqeEeaWkUjAIFA1EwShT2yf1lf9i9MvOzJkyBIpzlmhypEUTggeIAuEZVHPtxxAPFPRkzFGoVUFsCpzQCSX1fxFKBxSI_Ug4TwA5IbfIygUNi-IJR3_IFjxydDNESDBiSURf7MK5s3iRnS58dzsepWXwWVuamSYxiNsK0PvfVDfudrpYRXRrgOCuzFOr0J9Vxjn7TqEU2FkvsmNSS6RucoKyVyNMU0C_p3iXC
linkProvider Knovel
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Deep+Learning+for+Beginners&rft.au=Rivas%2C+Pablo&rft.au=Rivas%2C+Dr.+Pablo&rft.date=2020-01-01&rft.pub=Packt+Publishing+Limited&rft.isbn=9781838647582&rft_id=info:doi/10.0000%2F9781838647582&rft.externalDBID=n%2Fa&rft.externalDocID=9781838647582
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97818386%2F9781838647582.jpg