Models and Algorithms of Time-Dependent Scheduling
This book provides a comprehensive study of complexity results and optimal and suboptimal algorithms concerning time-dependent scheduling in single-, parallel- and dedicated-machine environments. This is the first monograph on time-dependent scheduling.
Saved in:
| Main Author | |
|---|---|
| Format | eBook Book |
| Language | English |
| Published |
Berlin, Heidelberg
Springer Nature
2020
Springer Springer Berlin / Heidelberg Springer Berlin Heidelberg |
| Edition | 2 |
| Series | Monographs in Theoretical Computer Science. An EATCS Series |
| Subjects | |
| Online Access | Get full text |
| ISBN | 3662593629 9783662593622 3662593610 9783662593615 |
| ISSN | 1431-2654 2193-2069 |
| DOI | 10.1007/978-3-662-59362-2 |
Cover
Table of Contents:
- Scheduling multiprocessor tasks -- Resource-dependent scheduling -- Scheduling on machines with variable speed -- Variable job processing times -- Position-dependent job scheduling problems -- Controllable job scheduling problems -- References -- Scheduling multiprocessor tasks -- Resource-dependent scheduling -- Scheduling on machines with variable speed -- Scheduling jobs with variable processing times -- Position-dependent job scheduling problems -- Controllable job scheduling problems -- 6 The time-dependent scheduling -- 6.1 Terminology of time-dependent scheduling -- 6.2 Pure models of time-dependent processing times -- 6.2.1 General models of time-dependent processing times -- 6.2.2 Specific models of deteriorating processing times -- 6.2.3 Specific models of shortening processing times -- 6.2.4 Specific models of alterable processing times -- 6.3 Mixedmodels of time-dependent job processing times -- 6.4 Notation of time-dependent scheduling problems -- 6.5 Mathematical background of time-dependent scheduling -- 6.6 Applications of time-dependent scheduling -- 6.6.1 Scheduling problems with deteriorating jobs -- 6.6.2 Scheduling problems with shortening jobs -- 6.6.3 Scheduling problems with alterable jobs -- 6.6.4 Scheduling problems with time-dependent parameters -- 6.6.5 Other problems with time-dependent parameters -- Bibliographic notes -- Single machine time-dependent scheduling problems -- Parallel machine time-dependent scheduling problems -- Dedicated machine time-dependent scheduling problems -- References -- Mathematical background of time-dependent scheduling -- Scheduling problems with deteriorating jobs -- Scheduling problems with shortening jobs -- Scheduling problems with alterable jobs -- Time-dependent scheduling problems with a learning effect -- Scheduling problems with time-dependent parameters
- 9.4.1 Proportional deterioration
- Other problems with time-dependent parameters -- Single machine time-dependent scheduling problems -- Parallel machine time-dependent scheduling problems -- Dedicated machine time-dependent scheduling problems -- Part III POLYNOMIAL PROBLEMS -- 7 Polynomial single machine problems -- 7.1 Minimizing the maximum completion time -- 7.1.1 Proportional deterioration -- 7.1.2 Proportional-linear deterioration -- 7.1.3 Linear deterioration -- 7.1.4 Simple non-linear deterioration -- 7.1.5 General non-linear deterioration -- 7.1.6 Proportional-linear shortening -- 7.1.7 Linear shortening -- 7.1.8 Non-linear shortening -- 7.1.9 Simple alteration -- 7.2 Minimizing the total completion time -- 7.2.1 Proportional deterioration -- 7.2.2 Proportional-linear deterioration -- 7.2.3 Linear deterioration -- 7.2.4 Simple non-linear deterioration -- 7.2.5 General non-linear deterioration -- 7.2.6 Proportional-linear shortening -- 7.2.7 Linear shortening -- 7.3 Minimizing the maximum lateness -- 7.3.1 Proportional deterioration -- 7.3.2 Proportional-linear deterioration -- 7.3.3 Linear deterioration -- 7.3.4 Simple non-linear deterioration -- Theorem 7.89. -- 7.4 Other criteria -- 7.4.1 Proportional deterioration -- Minimizing the total weighted completion time -- Minimizing the maximal cost -- Minimizing the total lateness and the maximum tardiness -- Minimizing the total number of tardy jobs -- Minimizing the total deviation of completion times -- 7.4.2 Proportional-linear deterioration -- Minimizing the total weighted completion time -- Minimizing the total number of tardy jobs -- Minimizing the maximum cost -- 7.4.3 Linear deterioration -- Minimizing the total weighted completion times -- Minimizing the maximal processing time -- Minimizing the total earliness and tardiness -- 7.4.4 Simple non-linear deterioration -- Minimizing the total weighted completion time
- Minimizing the total general completion time -- 7.4.5 General non-linear deterioration -- Minimizing the total weighted completion time -- 7.4.6 Proportional-linear shortening -- Minimizing the total weighted completion time -- Minimizing the total number of tardy jobs Theorem 7.145. -- Minimizing the maximal cost Theorem 7.146. -- 7.4.7 Linear shortening -- Minimizing the total weighted completion time -- Minimizing the total number of tardy jobs -- Minimizing the total earliness cost -- Minimizing the total earliness and tardiness -- References -- Minimizing the maximum completion time -- Minimizing the total completion time -- Minimizing the maximum lateness -- Other criteria -- 8 Polynomial parallel machine problems -- 8.1 Minimizing the total completion time -- 8.1.1 Linear deterioration -- 8.1.2 Simple non-linear deterioration -- 8.1.3 Linear shortening -- 8.2 Minimizing the total weighted earliness and tardiness -- References -- Minimizing the total completion time -- Minimizing the total weighted earliness and tardiness -- 9 Polynomial dedicated machine problems -- 9.1 Minimizing the maximum completion time -- 9.1.1 Proportional deterioration -- Flow shop problems -- Open shop problems -- 9.1.2 Proportional-linear deterioration -- Flow shop problems -- Open shop problems -- 9.1.3 Linear deterioration -- Flow shop problems -- 9.1.4 Simple non-linear deterioration -- Flow shop problems -- 9.1.5 Proportional-linear shortening -- Flow shop problems -- 9.2 Minimizing the total completion time -- 9.2.1 Proportional deterioration -- Flow shop problems -- 9.2.2 Linear deterioration -- Flow shop problems -- 9.2.3 Proportional-linear shortening -- Flow shop problems -- 9.3 Minimizing the maximum lateness -- 9.3.1 Proportional-linear deterioration -- Flow shop problems -- 9.3.2 Proportional-linear shortening -- Flow shop problems -- 9.4 Other criteria
- Basic concepts related to algorithms -- Main types of exact algorithms -- Main types of approximation algorithms -- Main types of heuristic algorithms -- 3 NP-complete problems -- 3.1 Basic definitions and results -- 3.1.1 The ordinary NP-completeness -- 3.1.2 The strong NP-completeness -- 3.1.3 Coping with NP-completeness -- 3.2 NP-complete problems -- 3.2.1 Additive NP-complete problems -- 3.2.2 Multiplicative -- Bibliographic notes -- References -- Basic definitions and results -- Additive NP-complete problems -- Multiplicative NP-complete problems -- Part II SCHEDULING MODELS -- 4 The classical scheduling theory -- 4.1 Models and problems of the scheduling theory -- 4.1.1 Scheduling models -- 4.1.2 Scheduling problems -- 4.2 Basic assumptions of the classical scheduling theory -- 4.3 Formulation of classical scheduling problems -- 4.3.1 Parameters of the set of jobs -- 4.3.2 Parameters of the set of machines -- 4.3.3 Parameters of the set of resources -- 4.4 The notion of schedule -- 4.4.1 The presentation of schedules -- 4.4.2 Parameters of job in a schedule -- 4.4.3 Types of schedules -- 4.5 The criteria of schedule optimality -- 4.6 Notation of scheduling problems -- Bibliographic notes -- References -- 5 The modern scheduling theory -- 5.1 Main directions in the modern scheduling theory -- 5.1.1 Scheduling multiprocessor tasks -- 5.1.2 Scheduling on machines with variable processing speeds -- 5.1.3 Scheduling jobs with variable processing times -- 5.2 Main models of variable job processing times -- 5.2.1 Models of position-dependent job processing times -- Notation of position-dependent scheduling problems -- Example results on position-dependent job scheduling -- 5.2.2 Models of controllable job processing times -- Notation of controllable scheduling problems -- Example results on controllable job scheduling -- Bibliographic notes
- Intro -- Preface -- References -- Preface to the first edition -- Contents -- Part I FUNDAMENTALS -- 1 Preliminaries -- 1.1 Mathematical notation and inference rules -- 1.1.1 Sets and vectors -- 1.1.2 Sequences -- 1.1.3 Functions -- 1.1.4 Logical notation and inference rules -- 1.1.5 Other notation -- 1.2 Basic definitions and results -- 1.2.1 Elementary lemmas -- 1.2.2 Graph theory definitions -- 1.2.3 Mean value theorems -- 1.2.4 Priority-generating functions -- 1.2.5 Bi-criteria optimization definitions -- Bibliographic notes -- Mathematical notation and inference rules -- Basic definitions and results -- References -- Mathematical notation and inference rules -- Basic definitions and results -- 2 Problems and algorithms -- 2.1 Decision and optimization problems -- 2.1.1 Encoding schemes -- 2.1.2 Undecidable and decidable problems -- 2.2 Basic concepts related to algorithms -- 2.2.1 Time and space complexity of algorithms -- 2.2.2 Pseudo-code of algorithms -- 2.2.3 Polynomial-time algorithms -- 2.2.4 Strongly and weakly polynomial-time algorithms -- 2.2.6 Pseudo-polynomial algorithms -- 2.2.7 Offline algorithms vs. online algorithms -- 2.3 Main types of exact algorithms -- 2.3.1 Enumeration algorithms -- 2.3.2 Branch-and-bound algorithms -- 2.3.3 Dynamic programming algorithms -- 2.4 Main types of approximation algorithms -- 2.4.1 Approximation algorithms -- 2.4.2 Approximation schemes -- 2.5 Main types of heuristic algorithms -- 2.5.1 Heuristic algorithms -- 2.5.2 Greedy algorithms -- 2.5.3 Local search algorithms -- 2.5.4 Meta-heuristic algorithms -- Bibliographic notes -- Decision and optimization problems -- Basic concepts related to algorithms -- Main types of exact algorithms -- Main types of approximation algorithms -- Main types of heuristic algorithms -- References -- Decision and optimization problems