Fundamentals of music processing : using Python and Jupyter Notebooks
The textbook provides both profound technological knowledge and a comprehensive treatment of essential topics in music processing and music information retrieval (MIR). Including numerous examples, figures, and exercises, this book is suited for students, lecturers, and researchers working in audio...
Saved in:
| Main Author | |
|---|---|
| Format | eBook Book |
| Language | English |
| Published |
Cham
Springer
2021
Springer International Publishing AG Springer International Publishing |
| Edition | 2 |
| Subjects | |
| Online Access | Get full text |
| ISBN | 9783030698072 3030698076 |
| DOI | 10.1007/978-3-030-69808-9 |
Cover
| Abstract | The textbook provides both profound technological knowledge and a comprehensive treatment of essential topics in music processing and music information retrieval (MIR). Including numerous examples, figures, and exercises, this book is suited for students, lecturers, and researchers working in audio engineering, signal processing, computer science, digital humanities, and musicology.The book consists of eight chapters. The first two cover foundations of music representations and the Fourier transform-concepts used throughout the book. Each of the subsequent chapters starts with a general description of a concrete music processing task and then discusses-in a mathematically rigorous way-essential techniques and algorithms applicable to a wide range of analysis, classification, and retrieval problems. By mixing theory and practice, the book's goal is to offer detailed technological insights and a deep understanding of music processing applications.As a substantial extension, the textbook's second edition introduces the FMP (fundamentals of music processing) notebooks, which provide additional audio-visual material and Python code examples that implement all computational approaches step by step. Using Jupyter notebooks and open-source web applications, the FMP notebooks yield an interactive framework that allows students to experiment with their music examples, explore the effect of parameter settings, and understand the computed results by suitable visualizations and sonifications. The FMP notebooks are available from the author's institutional web page at the International Audio Laboratories Erlangen. |
|---|---|
| AbstractList | The textbook provides both profound technological knowledge and a comprehensive treatment of essential topics in music processing and music information retrieval (MIR). Including numerous examples, figures, and exercises, this book is suited for students, lecturers, and researchers working in audio engineering, signal processing, computer science, digital humanities, and musicology.The book consists of eight chapters. The first two cover foundations of music representations and the Fourier transform-concepts used throughout the book. Each of the subsequent chapters starts with a general description of a concrete music processing task and then discusses-in a mathematically rigorous way-essential techniques and algorithms applicable to a wide range of analysis, classification, and retrieval problems. By mixing theory and practice, the book's goal is to offer detailed technological insights and a deep understanding of music processing applications.As a substantial extension, the textbook's second edition introduces the FMP (fundamentals of music processing) notebooks, which provide additional audio-visual material and Python code examples that implement all computational approaches step by step. Using Jupyter notebooks and open-source web applications, the FMP notebooks yield an interactive framework that allows students to experiment with their music examples, explore the effect of parameter settings, and understand the computed results by suitable visualizations and sonifications. The FMP notebooks are available from the author's institutional web page at the International Audio Laboratories Erlangen. |
| Author | Müller, Meinard |
| Author_xml | – sequence: 1 fullname: Muller, Meinard |
| BackLink | https://cir.nii.ac.jp/crid/1130850843196007195$$DView record in CiNii |
| BookMark | eNpNkUtPwzAQhI14CFr6A7jlgIQ4hK4fiR1uULU8VAEHxNVyEoeGpnaJE1D_PU4CEhevVvpmtDMeoQNjjUboDMMVBuDThIuQhkAhjBMBIkz20Ij6td_YPpp44G_n5AiNMGExZjQGcowmzn0AAOGEcIZP0HzRmlxttGlU5QJbBJvWlVmwrW2mnSvNe3AdtP182TUrawJl8uCx3e4aXQdPttGptWt3ig4Lr9eT3zlGb4v56-w-XD7fPcxulqHCMadJyIAxoYHnBDIicJ4qQog_h6agGeVFVjBR8JRGWogs4R6mQguVK1wwEGlEx-hyMFZurb_dylaNk1_VcIX8F1wknp0OrNvWPoCu5UBhkF2PHS2p9LzsBbJTXAwKH_-z1a6RvXHm26lVJee3szhiMfFdjtH5QJqylFnZvRhTEJH_AYqT2PvjJKI__1Z5iw |
| ContentType | eBook Book |
| Copyright | Springer Nature Switzerland AG 2021 |
| Copyright_xml | – notice: Springer Nature Switzerland AG 2021 |
| DBID | RYH |
| DEWEY | 006.5 |
| DOI | 10.1007/978-3-030-69808-9 |
| DatabaseName | CiNii Complete |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Music |
| EISBN | 3030698084 9783030698089 |
| Edition | 2 2nd ed. 2021 2nd ed. 2021. |
| ExternalDocumentID | 9783030698089 322916 EBC6546214 BC06935481 |
| GroupedDBID | 38. AABBV AABLV ABNDO ACWLQ AEJLV AEKFX AELOD AIYYB ALMA_UNASSIGNED_HOLDINGS BAHJK BBABE CZZ DBWEY IEZ OCUHQ ORHYB RYH SBO TPJZQ Z7R Z7X Z81 Z83 Z84 Z85 Z88 ARRAB |
| ID | FETCH-LOGICAL-a16739-40448e07d20c281dba2220003b0e437fcf48f7b35e88c9744838e8ada1f408b53 |
| ISBN | 9783030698072 3030698076 |
| IngestDate | Tue Aug 19 03:56:18 EDT 2025 Tue Jul 29 20:30:45 EDT 2025 Fri May 30 21:11:20 EDT 2025 Thu Jun 26 21:12:09 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| LCCallNum_Ident | Q337.5 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a16739-40448e07d20c281dba2220003b0e437fcf48f7b35e88c9744838e8ada1f408b53 |
| Notes | Includes bibliographical references (p. 484-488) and index |
| OCLC | 1246143602 |
| PQID | EBC6546214 |
| PageCount | 523 |
| ParticipantIDs | askewsholts_vlebooks_9783030698089 springer_books_10_1007_978_3_030_69808_9 proquest_ebookcentral_EBC6546214 nii_cinii_1130850843196007195 |
| PublicationCentury | 2000 |
| PublicationDate | c2021 2021 20210410 2021-04-09 |
| PublicationDateYYYYMMDD | 2021-01-01 2021-04-10 2021-04-09 |
| PublicationDate_xml | – year: 2021 text: c2021 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham |
| PublicationYear | 2021 |
| Publisher | Springer Springer International Publishing AG Springer International Publishing |
| Publisher_xml | – name: Springer – name: Springer International Publishing AG – name: Springer International Publishing |
| SSID | ssj0002722741 |
| Score | 2.5605063 |
| Snippet | The textbook provides both profound technological knowledge and a comprehensive treatment of essential topics in music processing and music information... |
| SourceID | askewsholts springer proquest nii |
| SourceType | Aggregation Database Publisher |
| SubjectTerms | Computer Appl. in Arts and Humanities Computer Science Fourier Analysis Information Storage and Retrieval Music Pattern Recognition Signal, Image and Speech Processing Sound-Recording and reproducing-Digital techniques-Handbooks, manuals, etc |
| TableOfContents | Chapter 8 Musically Informed Audio Decomposition -- 8.1 Harmonic-Percussive Separation -- 8.1.1 Horizontal-Vertical Spectrogram Decomposition -- 8.1.1.1 Median Filtering -- 8.1.1.2 Binary and Soft Masking -- 8.1.2 Signal Reconstruction -- 8.1.2.1 Signal Reconstruction from Original STFT -- 8.1.2.2 Signal Reconstruction from a Modified STFT -- 8.1.3 Applications -- 8.2 Melody Extraction -- 8.2.1 Instantaneous Frequency Estimation -- 8.2.2 Salience Representation -- 8.2.2.1 Refined Log-Frequency Spectrogram -- 8.2.2.2 Using Instantaneous Frequency -- 8.2.2.3 Harmonic Summation -- 8.2.3 Informed Fundamental Frequency Tracking -- 8.2.3.1 Continuity Constraints -- 8.2.3.2 Score-Informed Constraints -- 8.2.3.3 Applications -- 8.3 NMF-Based Audio Decomposition -- 8.3.1 Nonnegative Matrix Factorization -- 8.3.1.1 Formal Definition of NMF -- 8.3.1.2 Gradient Descent -- 8.3.1.3 Learning the Factorization Using Gradient Descent -- 8.3.1.4 Multiplicative Update Rules -- 8.3.2 Spectrogram Factorization -- 8.3.2.1 Template Constraints -- 8.3.2.2 Score-Informed Constraints -- 8.3.2.3 Onset Models -- 8.3.3 Audio Decomposition -- 8.3.3.1 Separation Process Using Spectral Masking -- 8.3.3.2 Notewise Audio Processing -- 8.3.3.3 Audio Editing -- 8.4 Summary and Further Readings -- Harmonic-Percussive Separation -- Melody Extraction -- NMF-Based Audio Decomposition -- 8.5 FMP Notebooks -- References -- Exercises -- Index 4.2.1 Basic Definitions and Properties -- 4.2.2 Enhancement Strategies -- 4.2.2.1 Feature Representation -- 4.2.2.2 Path Smoothing -- 4.2.2.3 Transposition Invariance -- 4.2.2.4 Thresholding -- 4.3 Audio Thumbnailing -- 4.3.1 Fitness Measure -- 4.3.1.1 Path Family -- 4.3.1.2 Optimization Scheme -- 4.3.1.3 Definition of Fitness Measure -- 4.3.1.4 Thumbnail Selection -- 4.3.2 Scape Plot Representation -- 4.3.3 Discussion of Properties -- 4.4 Novelty-Based Segmentation -- 4.4.1 Novelty Detection -- 4.4.2 Structure Features -- 4.5 Evaluation -- Precision, Recall, F-Measure -- Structure Annotations -- Labeling Evaluation -- Boundary Evaluation -- Thumbnail Evaluation -- 4.6 Summary and Further Readings -- Self-Similarity Matrices -- Audio Thumbnailing -- Segmentation Approaches -- Evaluation -- 4.7 FMP Notebooks -- References -- Exercises -- Chapter 5 Chord Recognition -- 5.1 Basic Theory of Harmony -- 5.1.1 Intervals -- 5.1.1.1 Semitone Differences -- 5.1.1.2 Frequency Ratios -- 5.1.1.3 Consonance and Dissonance -- 5.1.2 Chords and Scales -- 5.1.2.1 Triads -- 5.1.2.2 Major and Minor Chords -- 5.1.2.3 Musical Scales -- 5.1.2.4 Circle of Fifths -- 5.1.2.5 Functional Relation of Chords -- 5.1.2.6 Chord Progressions -- 5.2 Template-Based Chord Recognition -- 5.2.1 Basic Approach -- 5.2.2 Evaluation -- 5.2.2.1 Manual Annotation -- 5.2.2.2 Precision, Recall, F-measure -- 5.2.3 Ambiguities in Chord Recognition -- 5.2.3.1 Chord Ambiguities -- 5.2.3.2 Acoustic Ambiguities -- 5.2.3.3 Tuning -- 5.2.3.4 Segmentation Ambiguities -- 5.2.4 Enhancement Strategies -- 5.2.4.1 Templates with Harmonics -- 5.2.4.2 Templates from Examples -- 5.2.4.3 Spectral Enhancement -- 5.2.4.4 Prefiltering -- 5.3 HMM-Based Chord Recognition -- 5.3.1 Markov Chains and Transition Probabilities -- 5.3.2 Hidden Markov Models -- 5.3.3 Evaluation and Model Specification 5.3.3.1 Evaluation Problem -- 5.3.3.2 Uncovering Problem -- 5.3.3.3 Estimation Problem -- 5.3.4 Application to Chord Recognition -- 5.3.4.1 Specification of Emission Probabilities -- 5.3.4.2 Specification of Transition Probabilities -- 5.3.4.3 Effect of HMM-Based Postfiltering -- 5.4 Summary and Further Readings -- Chord Recognition -- Hidden Markov Models -- 5.5 FMP Notebooks -- References -- Exercises -- Chapter 6 Tempo and Beat Tracking -- 6.1 Onset Detection -- 6.1.1 Energy-Based Novelty -- 6.1.2 Spectral-Based Novelty -- 6.1.3 Phase-Based Novelty -- 6.1.4 Complex-Domain Novelty -- 6.2 Tempo Analysis -- 6.2.1 Tempogram Representations -- 6.2.2 Fourier Tempogram -- 6.2.3 Autocorrelation Tempogram -- 6.2.4 Cyclic Tempogram -- 6.3 Beat and Pulse Tracking -- 6.3.1 Predominant Local Pulse -- 6.3.1.1 Definition of PLP Function -- 6.3.1.2 Discussion of Properties -- 6.3.2 Beat Tracking by Dynamic Programming -- 6.3.3 Adaptive Windowing -- 6.4 Summary and Further Readings -- Onset Detection -- Tempo Analysis -- Beat Tracking -- 6.5 FMP Notebooks -- References -- Exercises -- Chapter 7 Content-Based Audio Retrieval -- 7.1 Audio Identification -- 7.1.1 General Requirements -- 7.1.2 Audio Fingerprints Based on Spectral Peaks -- 7.1.2.1 Design of Audio Fingerprints -- 7.1.2.2 Fingerprint Matching -- 7.1.3 Indexing, Retrieval, Inverted Lists -- 7.1.4 Index-Based Audio Identification -- 7.2 Audio Matching -- 7.2.1 General Requirements and Feature Design -- 7.2.2 Diagonal Matching -- 7.2.3 DTW-Based Matching -- 7.3 Version Identification -- 7.3.1 Versions in Music -- 7.3.1.1 Types of Versions -- 7.3.1.2 Types of Modifications -- 7.3.2 Identification Procedure -- 7.3.3 Evaluation Measures -- 7.4 Summary and Further Readings -- Audio Identification -- Audio Matching -- Version Identification -- Alignment Scenarios -- 7.5 FMP Notebooks -- References -- Exercises Intro -- Preface to the Second Edition -- Preface to the First Edition -- Content -- Target Readership -- View: A First Course in Music Processing -- View: Introduction to Fourier Analysis and Applications -- View: Data Representations and Algorithms -- Acknowledgements -- Contents -- Basic Symbols and Notions -- Chapter 1 Music Representations -- 1.1 Sheet Music Representations -- 1.1.1 Musical Notes and Pitches -- 1.1.2 Western Music Notation -- 1.2 Symbolic Representations -- 1.2.1 Piano-Roll Representations -- 1.2.2 MIDI Representations -- 1.2.3 Score Representations -- 1.2.4 Optical Music Recognition -- 1.3 Audio Representation -- 1.3.1 Waves and Waveforms -- 1.3.2 Frequency and Pitch -- 1.3.3 Dynamics, Intensity, and Loudness -- 1.3.4 Timbre -- 1.4 Summary and Further Readings -- 1.5 FMP Notebooks -- References -- Exercises -- Chapter 2 Fourier Analysis of Signals -- 2.1 The Fourier Transform in a Nutshell -- 2.1.1 Fourier Transform for Analog Signals -- 2.1.1.1 The Role of the Phase -- 2.1.1.2 Computing Similarity with Integrals -- 2.1.1.3 First Definition of the Fourier Transform -- 2.1.1.4 Complex Numbers -- 2.1.1.5 Complex Definition of the Fourier Transform -- 2.1.1.6 Fourier Representation -- 2.1.2 Examples -- 2.1.3 Discrete Fourier Transform -- 2.1.4 Short-Time Fourier Transform -- 2.2 Signals and Signal Spaces -- 2.2.1 Analog Signals -- 2.2.2 Digital Signals -- 2.2.2.1 Sampling -- 2.2.2.2 Quantization -- 2.2.3 Signal Spaces -- 2.2.3.1 Complex Numbers -- 2.2.3.2 Vector Spaces -- 2.2.3.3 Inner Products -- 2.2.3.4 The Space l2(Z) -- 2.2.3.5 The Space L2(R) -- 2.2.3.6 The Space L2([0 -- 1)) -- 2.2.3.7 Hilbert Spaces -- 2.3 Fourier Transform -- 2.3.1 Fourier Transform for Periodic CT-Signals -- 2.3.2 Complex Formulation of the Fourier Transform -- 2.3.2.1 Exponential Function -- 2.3.2.2 Polar Coordinates -- 2.3.2.3 Complex Fourier Series 2.3.2.4 Relation Between Complex and Real Fourier Series -- 2.3.3 Fourier Transform for CT-Signals -- 2.3.3.1 Interference -- 2.3.3.2 Fourier Transform for Impulses -- 2.3.3.3 Translation and Modulation -- 2.3.4 Fourier Transform for DT-Signals -- 2.3.4.1 Periodicity and Aliasing -- 2.3.4.2 Riemann Approximation -- 2.3.4.3 Chirp Signal Example -- 2.4 Discrete Fourier Transform (DFT) -- 2.4.1 Signals of Finite Length -- 2.4.2 Definition of the DFT -- 2.4.3 Fast Fourier Transform (FFT) -- 2.4.4 Interpretation of the DFT -- 2.5 Short-Time Fourier Transform (STFT) -- 2.5.1 Definition of the STFT -- 2.5.1.1 Alternative Definition of the STFT -- 2.5.1.2 Role of the Window Function -- 2.5.2 Spectrogram Representation -- 2.5.3 Discrete Version of the STFT -- 2.5.3.1 Summary -- 2.5.3.2 Examples -- 2.6 Summary and Further Readings -- 2.7 FMP Notebooks -- References -- Exercises -- Chapter 3 Music Synchronization -- 3.1 Audio Features -- 3.1.1 Log-Frequency Spectrogram -- 3.1.2 Chroma Features -- 3.1.2.1 Logarithmic Compression -- 3.1.2.2 Transpositions -- 3.1.2.3 Concluding Example -- 3.2 Dynamic Time Warping -- 3.2.1 Basic Approach -- 3.2.1.1 Warping Path -- 3.2.1.2 OptimalWarping Path and DTW Distance -- 3.2.1.3 Dynamic Programming Algorithm -- 3.2.2 DTW Variants -- 3.2.2.2 LocalWeights -- 3.2.2.3 Global Constraints -- 3.2.2.4 Multiscale DTW -- 3.3 Applications -- 3.3.1 Multimodal Music Navigation -- 3.3.1.1 Interpretation Switcher Interface -- 3.3.1.2 Score Viewer Interface -- 3.3.2 Tempo Curves -- 3.4 Summary and Further Readings -- Audio Features -- Dynamic Time Warping -- Music Synchronization -- Applications -- 3.5 FMP Notebooks -- References -- Exercises -- Chapter 4 Music Structure Analysis -- 4.1 General Principles -- 4.1.1 Segmentation and Structure Analysis -- 4.1.2 Musical Structure -- 4.1.3 Musical Dimensions -- 4.2 Self-Similarity Matrices |
| Title | Fundamentals of music processing : using Python and Jupyter Notebooks |
| URI | https://cir.nii.ac.jp/crid/1130850843196007195 https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=6546214 http://link.springer.com/10.1007/978-3-030-69808-9 https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9783030698089 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZb9rK89LKNZb0gxh4Gw8O2JFvuWxNSSmjKHrrSNyHJMoRtSVmdQvvre458TTYYKwZhG9vH6DPH59O5EfIpc5YLh1HiVvCAx0UWGMmx5H7OWFLIRGgkivPL5Pw7n92Im67voM8uKc1X-_jXvJLnoArnAFfMkv0PZNuHwgnYB3xhBIRh3DJ-28O65xDmb1Rl-X0oxi_s1vzltgr69-QfiP7a7317wOoA3kcwW98-YE3Ey1XpfaStOT1Hd_l40mQFzh0m6eb9BYE42loQaBYEN4giQ2qQybBqk_OH2uxHSsCVAV4KerD7R7SRe-MJPIcBzQHG-TJNge6-Op3OLq7bda04jbEiDqbRNDKTqtBR9w6Nd7ku8Lshc0iG-u4HKHhQ_uUd_PGXi8WG9b_lsPZ2wNUuGWBuyB554Zb7ZKfpiEFrBblPhr3yjm_ItA8TXRXUw0Q7mOgJ9SDRCiQKINEaJNqC9JZcn02vJudB3bYi0FGSomM9BM7rwjSPQxsDHzAajDAknyZ0nKWFLbgsUsOEk9ICn-OSSSd1rqOCh9II9o4Mlqule0-ocGCQWWm0c4KbNNdO5jZySQFbpE04Ih97s6Xuf1ZvpnrTLbMROYJJVHaBYwRGiwSrnKPuRQMzEyNCm-lV_v46LlhNxxPMdYsjPiKfm2lXlYSm3DVIUkyBLOWFqezDP6QdkNfdV3tIBuXvtTsCw640x_W39ARf7T_r |
| linkProvider | Library Specific Holdings |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Fundamentals+of+music+processing+%3A+using+Python+and+Jupyter+Notebooks&rft.au=M%C3%BCller%2C+Meinard&rft.date=2021-01-01&rft.pub=Springer&rft.isbn=9783030698072&rft_id=info:doi/10.1007%2F978-3-030-69808-9&rft.externalDocID=BC06935481 |
| thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97830306%2F9783030698089.jpg |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fmedia.springernature.com%2Fw306%2Fspringer-static%2Fcover-hires%2Fbook%2F978-3-030-69808-9 |