Systems engineering and artificial intelligence

This book provides a broad overview of the benefits from a Systems Engineering design philosophy in architecting complex systems composed of artificial intelligence (AI), machine learning (ML) and humans situated in chaotic environments.   The major topics include emergence, verification and validat...

Full description

Saved in:
Bibliographic Details
Main Authors Lawless, William F., Mittu, Ranjeev, Sofge, Donald A., Shortell, Thomas M., McDermott, Thomas A.
Format eBook Book
LanguageEnglish
Published Cham Springer 2021
Springer International Publishing AG
Springer International Publishing
Edition1
Subjects
Online AccessGet full text
ISBN3030772829
9783030772826
DOI10.1007/978-3-030-77283-3

Cover

Abstract This book provides a broad overview of the benefits from a Systems Engineering design philosophy in architecting complex systems composed of artificial intelligence (AI), machine learning (ML) and humans situated in chaotic environments.   The major topics include emergence, verification and validation of systems using AI/ML and human systems integration to develop robust and effective human-machine teams-where the machines may have varying degrees of autonomy due to the sophistication of their embedded AI/ML.  The chapters not only describe what has been learned, but also raise questions that must be answered to further advance the general Science of Autonomy.  The science of how humans and machines operate as a team requires insights from, among others, disciplines such as the social sciences, national and international jurisprudence, ethics and policy, and sociology and psychology. The social sciences inform how context is constructed, how trust is affected when humans and machines depend upon each other and how human-machine teams need a shared language of explanation. National and international jurisprudence determine legal responsibilities of non-trivial human-machine failures, ethical standards shape global policy, and sociology provides a basis for understanding team norms across cultures. Insights from psychology may help us to understand the negative impact on humans if AI/ML based machines begin to outperform their human teammates and consequently diminish their value or importance. This book invites professionals and the curious alike to witness a new frontier open as the Science of Autonomy emerges.
AbstractList This book provides a broad overview of the benefits from a Systems Engineering design philosophy in architecting complex systems composed of artificial intelligence (AI), machine learning (ML) and humans situated in chaotic environments.   The major topics include emergence, verification and validation of systems using AI/ML and human systems integration to develop robust and effective human-machine teams-where the machines may have varying degrees of autonomy due to the sophistication of their embedded AI/ML.  The chapters not only describe what has been learned, but also raise questions that must be answered to further advance the general Science of Autonomy.  The science of how humans and machines operate as a team requires insights from, among others, disciplines such as the social sciences, national and international jurisprudence, ethics and policy, and sociology and psychology. The social sciences inform how context is constructed, how trust is affected when humans and machines depend upon each other and how human-machine teams need a shared language of explanation. National and international jurisprudence determine legal responsibilities of non-trivial human-machine failures, ethical standards shape global policy, and sociology provides a basis for understanding team norms across cultures. Insights from psychology may help us to understand the negative impact on humans if AI/ML based machines begin to outperform their human teammates and consequently diminish their value or importance. This book invites professionals and the curious alike to witness a new frontier open as the Science of Autonomy emerges.
This book provides a broad overview of the benefits from a Systems Engineering design philosophy in architecting complex systems composed of artificial intelligence (AI), machine learning (ML) and humans situated in chaotic environments. --
Author Lawless, William F.
Sofge, Donald A.
McDermott, Thomas A.
Shortell, Thomas M.
Mittu, Ranjeev
Author_xml – sequence: 1
  fullname: Lawless, William F.
– sequence: 2
  fullname: Mittu, Ranjeev
– sequence: 3
  fullname: Sofge, Donald A.
– sequence: 4
  fullname: Shortell, Thomas M.
– sequence: 5
  fullname: McDermott, Thomas A.
BackLink https://cir.nii.ac.jp/crid/1130572155855361685$$DView record in CiNii
BookMark eNpFkMtOwzAQRY14CAp8ALsukBCLUE8cZ-wlVLwkJBYgtpaT2MXUOCUOr7_HaSu68eh6jq_nzojshDYYQk6AXgClOJEoMpZRRjPEXLCMbZERS3KpcHsjcrlHRpAuoaCFZPvkOMY3SmmeeijZAZk8_cbevMexCTMXjOlcmI11aMa66511tdN-7EJvvHczE2pzRHat9tEcr-shebm5fp7eZQ-Pt_fTy4dMQ8mBZkKDkFagsLlmEjW3FG0ha0AUhWkKaVOGCmVZVlZqLSSVZQHQNKUFpk3FDsnZyjjOnfextb2q2nYe8-IHVTWPKQRwgYVI5PmK1HFuvuNr6_uovrxZ4ip9878ZltjJ2nUxJDXdylQBVcNiB1oxlXi1fKDYZo5F1358mtirpXFtQt9pr66vpiVKzPkwx-mKDM6p2g0nAKMcc-BccM5KKAVnf4_gfms
ContentType eBook
Book
Copyright Springer Nature Switzerland AG 2021. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply
Copyright_xml – notice: Springer Nature Switzerland AG 2021. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply
DBID RYH
DEWEY 620.001171
DOI 10.1007/978-3-030-77283-3
DatabaseName CiNii Complete
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Engineering
EISBN 3030772837
9783030772833
Edition 1
Editor Lawless, William F.
Sofge, Donald A.
McDermott, Thomas A.
Shortell, Thomas
Mittu, Ranjeev
Editor_xml – sequence: 1
  givenname: William F.
  orcidid: 0000-0002-3142-6923
  surname: Lawless
  fullname: Lawless, William F.
  email: w.lawless@icloud.com
– sequence: 2
  givenname: Ranjeev
  surname: Mittu
  fullname: Mittu, Ranjeev
  email: ranjeev.mittu@nrl.navy.mil
– sequence: 3
  givenname: Donald A.
  orcidid: 0000-0003-0153-3581
  surname: Sofge
  fullname: Sofge, Donald A.
  email: donald.sofge@nrl.navy.mil
– sequence: 4
  givenname: Thomas
  surname: Shortell
  fullname: Shortell, Thomas
  email: thomas.m.shortell@lmco.com
– sequence: 5
  givenname: Thomas A.
  surname: McDermott
  fullname: McDermott, Thomas A.
  email: tamcdermott42@gmail.com
ExternalDocumentID bks000158748
9783030772833
497426
EBC6797258
BC11846198
Genre Electronic books
GroupedDBID 38.
AABBV
AABLV
AALIM
ABNDO
ACBPT
ACWLQ
AEJLV
AEKFX
AELOD
AIYYB
ALMA_UNASSIGNED_HOLDINGS
BAHJK
BBABE
CZZ
DBWEY
IEZ
OCUHQ
ORHYB
RYH
SBO
TPJZQ
WZT
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
ID FETCH-LOGICAL-a16510-8a189f878f2a397a5f07f49c17784ed49f978b7966bf9aa89096411dd6f13aeb3
ISBN 3030772829
9783030772826
IngestDate Sun Sep 01 03:27:36 EDT 2024
Fri Nov 08 03:30:13 EST 2024
Tue Oct 01 19:55:13 EDT 2024
Wed Apr 09 22:02:32 EDT 2025
Thu Jun 26 23:29:18 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCallNum TA417.6 .L39 2021
LCCallNum_Ident Q334-342
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a16510-8a189f878f2a397a5f07f49c17784ed49f978b7966bf9aa89096411dd6f13aeb3
Notes Includes bibliographical references
Print on demand edition
OCLC 1283140493
PQID EBC6797258
PageCount 566
ParticipantIDs skillsoft_books24x7_bks000158748
askewsholts_vlebooks_9783030772833
springer_books_10_1007_978_3_030_77283_3
proquest_ebookcentral_EBC6797258
nii_cinii_1130572155855361685
PublicationCentury 2000
PublicationDate c2021
2021
20211102
2021-11-02
2021.
PublicationDateYYYYMMDD 2021-01-01
2021-11-02
PublicationDate_xml – year: 2021
  text: c2021
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Place of publication not identified
PublicationYear 2021
Publisher Springer
Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer
– name: Springer International Publishing AG
– name: Springer International Publishing
SSID ssj0002728793
Score 2.281354
Snippet This book provides a broad overview of the benefits from a Systems Engineering design philosophy in architecting complex systems composed of artificial...
SourceID skillsoft
askewsholts
springer
proquest
nii
SourceType Aggregation Database
Publisher
SubjectTerms Artificial Intelligence
Artificial intelligence -- Industrial applications
Artificial intelligence-Mathematical models
Computer Science
Deformations (Mechanics)
Fracture mechanics
Special Purpose and Application-Based Systems
Systems engineering
User Interfaces and Human Computer Interaction
SubjectTermsDisplay Deformations (Mechanics).
Electronic books.
Fracture mechanics.
TableOfContents 15 Humanity in the Era of Autonomous Human-machine Teams -- 15.1 Introduction: AHMTs in the Form of the Trio -- 15.1.1 The Trio: Data, the Internet, and Algorithms -- 15.1.2 AHMTs Manifested by the Trio -- 15.1.3 Scitovsky's Caveat -- 15.2 Human-Machine Teams -- 15.2.1 Shelley Model: Frankenstein and His Creature -- 15.2.2 Lovelock Model: GAIA and Novacene -- 15.2.3 Margulis Model: Symbiogenesis and Super Cooperators -- 15.2.4 Polanyi Model: Tension Between Habitation and Improvement -- 15.2.5 Laloux Model: Soulful Organizations -- 15.3 Meaning of the Trios for Humanity -- 15.3.1 Co-evolutions of Humans and Machines -- 15.3.2 Individuality -- 15.3.3 Democratization of Individuality -- 15.4 Meaning of the Trio for the Humanities -- 15.4.1 Distant Reading -- 15.4.2 Extended Reading -- 15.4.3 Participatory Reading -- 15.5 Concluding Remarks -- References -- 16 Transforming the System of Military Medical Research: An Institutional History of the Department of Defense's (DoD) First Electronic Institutional Review Board Enterprise IT System -- 16.1 Introduction. A Tale of Two Histories -- 16.1.1 Goal 1: The eIRB Transformed the MEDCENs -- 16.1.2 Goal 2: The Initial Meeting on Collaboration -- 16.1.3 Our Two Goals Merged into One -- 16.2 The Next Steps in the Transformation from a Paper to Electronic System -- 16.3 Boundary Maintenance -- 16.4 Future Steps to Determine Impacts. Preliminary Results in 2010 -- 16.5 Summary -- 16.6 Postscript -- References -- 17 Collaborative Communication and Intelligent Interruption Systems -- 17.1 Introduction -- 17.2 Interruptions in Multi-user Multitasking Interactions -- 17.2.1 Low Cognitive Interruption Timings -- 17.2.2 High Cognitive Interruption Timings -- 17.3 Methods -- 17.3.1 Data Collection -- 17.3.2 Conditions -- 17.4 Results and Discussion -- 17.4.1 Team Performance Analyses
8.7 Design Science: Toward the Science of AI System Engineering -- 8.8 Conclusion -- References -- 9 The Department of Navy's Digital Transformation with the Digital System Architecture, Strangler Patterns, Machine Learning, and Autonomous Human-Machine Teaming -- 9.1 Introduction -- 9.2 Autonomous Human-Machine Teaming Lifecycle Difficulties -- 9.3 Unique Challenges Facing the Department of Navy and Autonomous Human-Machine Teaming -- 9.3.1 Department of Navy Non-technical Challenges -- 9.3.2 Department of Navy Technical Challenges -- 9.4 Attacking the Technical Debt and Inflation to Enable AHMT Solutions -- 9.4.1 AHMT Solutions and New Target Platforms -- 9.4.2 AHMT Solutions and Legacy Target Platforms -- 9.5 Conclusion and Path Forward -- References -- 10 Digital Twin Industrial Immune System: AI-driven Cybersecurity for Critical Infrastructures -- 10.1 Introduction -- 10.1.1 Overview -- 10.1.2 Cybersecurity Technology Gaps for Advanced Detection, Protection and Monitoring Solutions -- 10.1.3 Digital Ghost: A Next-Generation Response to Close Critical Energy Infrastructure Gaps -- 10.2 People, Process and Technology Applicability Gap Analysis -- 10.2.1 Attack Detection -- 10.2.2 Attack Localization -- 10.2.3 Attack Neutralization -- 10.2.4 Man Versus Machine Anomaly Forecasting and Detection -- 10.3 Digital Ghost Research Findings and Future Research -- 10.3.1 Invariant Learning -- 10.3.2 Autonomous Defense: Critical Sensors Identification and Trust -- 10.3.3 Humble AI -- 10.3.4 Explainable AI (XAI) -- 10.4 Conclusion -- References -- 11 A Fractional Brownian Motion Approach to Psychological and Team Diffusion Problems -- 11.1 Introduction -- 11.2 Random Walk -- 11.2.1 Wiener Process from the Fair Simple Random Walk -- 11.2.2 Wiener Process (standard Brownian Motion) Defined -- 11.2.3 Simulation of the Wiener Process via G0,1n
5.6 Conclusions and Future Directions -- References -- 6 Systems Engineering for Artificial Intelligence-based Systems: A Review in Time -- 6.1 Perspectives on AI and Systems Engineering -- 6.2 The Dynamics of This Space -- 6.2.1 Evolving an SE Framework: Ontologies of AI/ML-Dealing with the Breadth of the Fields -- 6.2.2 Systems Engineering as a Moving Target -- 6.2.3 The First to Market Motivation -- 6.2.4 Technical Debt -- 6.2.5 Summary -- 6.3 Stepping Through Some Systems Engineering Issues -- 6.3.1 Capability Maturity Model Integration [CMMI] and SE for R&amp -- D -- 6.3.2 Requirements Engineering -- 6.3.3 Software Engineering for AI/ML Systems -- 6.3.4 Test and Evaluation -- 6.4 Sampling of Technical Issues and Challenges -- 6.4.1 Emergence and Emergent Behavior -- 6.4.2 Safety in AI/ML -- 6.4.3 The Issue of Explanation/Explainability -- 6.5 Summary -- References -- 7 Human-Autonomy Teaming for the Tactical Edge: The Importance of Humans in Artificial Intelligence Research and Development -- 7.1 Introduction -- 7.2 The Fundamental Nature of Human-Autonomy Teaming -- 7.2.1 Complementarity of Human and AI Characteristics -- 7.2.2 Tracking the Important Roles of the Human Across AI History -- 7.3 Artificial Intelligence for Human-Autonomy Teams -- 7.3.1 Quantifying Soldier Understanding for AI -- 7.3.2 Soldier-Guided AI Adaptations -- 7.3.3 Characterizing Soldier-Autonomy Performance -- 7.4 Conclusions -- References -- 8 Re-orienting Toward the Science of the Artificial: Engineering AI Systems -- 8.1 Introduction -- 8.2 AI Software Engineering -- 8.3 AI-enabled Complex Systems-of-Systems and Emergent Behaviors -- 8.4 The Importance of Interoperability -- 8.5 The Role of Uncertainty in ML -- 8.6 The Challenge of Data and ML: An NLP Example -- 8.6.1 System Architecture -- 8.6.2 Results -- 8.6.3 Discussion
17.4.2 Individual Subjective Analyses
Intro -- Preface -- Contents -- 1 Introduction to "Systems Engineering and Artificial Intelligence" and the Chapters -- 1.1 Introduction. The Disruptive Nature of AI -- 1.1.1 Justifying Speedy Decisions -- 1.1.2 Systems Engineering (SE) -- 1.1.3 Common Ground: AI, Interdependence, and SE -- 1.1.4 Social Science -- 1.1.5 The Science of Human Teams -- 1.1.6 Human-Machine Teams -- 1.2 Introduction to the Chapters -- 1.3 Summary -- References -- 2 Recognizing Artificial Intelligence: The Key to Unlocking Human AI Teams -- 2.1 Introduction -- 2.1.1 Motivation and Goals -- 2.1.2 Types of Human-AI Collaboration -- 2.1.3 Ground Rules -- 2.2 System Engineering -- 2.2.1 Design and Embodiment -- 2.2.2 Generative Language Models -- 2.2.3 System Architecture -- 2.2.4 Agile Development -- 2.3 Applications -- 2.3.1 Ideation Discussions -- 2.3.2 Collaborative Writing -- 2.4 Innovative Brainstorm Workshop -- 2.4.1 Protocol -- 2.4.2 Analysis -- 2.4.3 Preliminary Results -- 2.5 Related Work -- 2.6 Future Applications -- 2.7 Conclusion -- References -- 3 Artificial Intelligence and Future of Systems Engineering -- 3.1 Introduction -- 3.2 SERC AI4SE and SE4AI Roadmap -- 3.3 Digital Engineering -- 3.4 AI/ML Technology Evolution -- 3.5 Augmented Engineering -- 3.6 Workforce and Culture -- 3.7 Summary-The AI imperative for Systems Engineering -- References -- 4 Effective Human-Artificial Intelligence Teaming -- 4.1 Introduction -- 4.2 Synthetic Teammates -- 4.3 HAT Findings and Their Implications for Human Teams -- 4.4 Conclusions and Future Work -- References -- 5 Toward System Theoretical Foundations for Human-Autonomy Teams -- 5.1 Introduction -- 5.2 Organizational Structure and Role/Function Allocation -- 5.3 Working Together on Tasks -- 5.4 Teaming Over Longer Durations -- 5.5 Formally Modeling and Composing Complex Human-Machine Systems
11.2.4 Continuity of Sample Paths -- 11.2.5 Non-differentiability of Wiener Process Sample Paths -- 11.3 Brownian Motion -- 11.3.1 Simulation of Brownian Motion -- 11.4 Stopping Times and Absorbing Boundaries -- 11.4.1 Two Absorbing Boundaries-The Situation for Ratcliff Drift Diffusion -- 11.5 Fractional Brownian Motion -- 11.5.1 Covariance of Brownian Motion -- 11.5.2 Definition of the Fractional Wiener Process -- 11.5.3 Existence and Properties of the Fractional Wiener Process -- 11.5.4 Ratcliff Diffusion Revisited -- 11.6 Determining H, a Problem in AI -- 11.6.1 Our Hybrid Approach -- 11.7 Team Science and Future Work -- References -- 12 Human-Machine Understanding: The Utility of Causal Models and Counterfactuals -- 12.1 Introduction -- 12.2 Information-Theoretic Framework for SCM Construction -- 12.3 Assessing and Correcting for Bias in Information-Theoretic SCM Construction -- 12.4 Construction of SCM for Counterfactuals -- 12.5 Notes on Related Work -- 12.6 Summary -- References -- 13 An Executive for Autonomous Systems, Inspired by Fear Memory Extinction -- 13.1 The Problem -- 13.2 Moondoodya, a Novel Electronic Warfare System -- 13.3 PTSD Fear Extinction -- 13.4 A Mathematical Approach to Executive Abstraction -- 13.5 'Effect First' Modelling -- 13.6 A Closure Embedding Strategy -- 13.7 The Tookoonooka Vortex Collaborative -- 13.8 Conclusions -- References -- 14 Contextual Evaluation of Human-Machine Team Effectiveness -- 14.1 Introduction -- 14.2 Related Works -- 14.3 Background -- 14.3.1 Interference -- 14.3.2 Inverse Reinforcement Learning (IRL) -- 14.3.3 Preferential Trajectory-Based IRL (PT-IRL) -- 14.4 Approach -- 14.4.1 Experimental Setup -- 14.4.2 Training Classifier -- 14.4.3 Human and Human-Machine Teams -- 14.4.4 Evaluation of Human-Machine Team Effectiveness -- 14.5 Conclusion and Future Work -- References
Title Systems engineering and artificial intelligence
URI https://cir.nii.ac.jp/crid/1130572155855361685
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=6797258
http://link.springer.com/10.1007/978-3-030-77283-3
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9783030772833
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbocoBeeIsCRRHigLTKEseO7Rzb1VZVBVwoVW-Wk9hiuyiVmrRC_Hq-OM8tlRBcrN3IXs_ORDPzjWfGhLyPRO6yGOgkiwraRKus14OhsIyLyCWwSb7b5xdx_I2fnCfnY722ry6ps0X-6866kv-RKp5Brk2V7D9IdvhRPMBnyBcjJIzxlvM7fO3qN9o-43M7dhNsu65e-dQffxHHpNfmkHVjmiuu27y6Ns4yP1oMLF_X9bXnuCkvrL0ZYi-Xrr1-vQ0jzw-GFV-_N5m67blFm2g0_7yYhhFieiuM0IcRt-AlazSABCgTdyrbaX4FZjaOumIhGy3LkO93uASO4cBqaofsSAmQfP9gdfLpbIiGxVgKTdEU3_R7pm17pJGG_ky6awu8tecu2TXVBmYBJqOu4CeU6_UWZnhQbcDXCqbtjyNv70mcPiazprrkCblny6fkUX-nRtCp2GfkYyfaYCLaAKINRtEGU9E-J2dHq9PlcdhdahEaKqAAQ2WoSp2SysUGzqBJXCQdT3MqpeK24KnDv8skYGjmUmNUCpDJKS0K4SgzNmMvyKy8LO1LEoBnrGgwrikiuLU05bGxHBYjMi43lu2RdxOu6Jsf_gC-0hO2MkzaB7N0vm5GCpcmkXADgSITJqhQyR4JejZqv77LGtarw6WQqYwThSkDe7XfIuY_pc42lS_VV5Jjyoee6-0M3ffLBjGaaZCjPT2avfoLQa_Jw_EFfkNm9dW13YdnWGdvu9fqNxGhVDE
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Systems+engineering+and+artificial+intelligence&rft.au=Lawless%2C+William+F.&rft.au=Mittu%2C+Ranjeev&rft.au=Sofge%2C+Donald+A.&rft.au=Shortell%2C+Thomas+M.&rft.date=2021-01-01&rft.pub=Springer&rft.isbn=9783030772826&rft_id=info:doi/10.1007%2F978-3-030-77283-3&rft.externalDocID=BC11846198
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97830307%2F9783030772833.jpg
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fmedia.springernature.com%2Fw306%2Fspringer-static%2Fcover-hires%2Fbook%2F978-3-030-77283-3