Online Geovisualization with Fast Kernel Density Estimator

Visualization of geographic log-data is one of the key issues on geovisualization, which is defined as a research field of visualizing geographic information. This paper aims to visualize them interactively using graphics like thermograph, mashuped with interactive mapping system (IMS), such as Goog...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology - Volume 01 Vol. 1; pp. 622 - 625
Main Authors Hotta, Hajime, Hagiwara, Masafumi
Format Conference Proceeding
LanguageEnglish
Published Washington, DC, USA IEEE Computer Society 15.09.2009
IEEE
SeriesACM Conferences
Subjects
Online AccessGet full text
ISBN0769538010
9780769538013
DOI10.1109/WI-IAT.2009.105

Cover

Abstract Visualization of geographic log-data is one of the key issues on geovisualization, which is defined as a research field of visualizing geographic information. This paper aims to visualize them interactively using graphics like thermograph, mashuped with interactive mapping system (IMS), such as Google Map. While conventional researches employ probability density function estimation algorithms, the problems are twofold. One is that the focused data should be analyzed rapidly online during the interaction between systems and users, for the map size and location can be changed flexibly with IMS. The other is that focused data may be sparse when the map is zoomed in. In general, EM algorithm, a commonly-used probabilistic density approximator, is not robust to sparseness and it takes long time for model construction. Parzen window is also a simple, well-known technique but it requires many kernels that make calculation costs high. The proposed method is a novel, simple kernel density estimator which is fast for model construction with high robustness to sparse data. The proposed method is based on Parzen window and employs a clustering algorithm inspired by fuzzy ART (Adaptive Resonance Theory) to reduce kernels. From the experimental results, estimation accuracy excels the conventional methods with various benchmarking models.
AbstractList Visualization of geographic log-data is one of the key issues on geovisualization, which is defined as a research field of visualizing geographic information. This paper aims to visualize them interactively using graphics like thermograph, mashuped with interactive mapping system (IMS), such as Google Map. While conventional researches employ probability density function estimation algorithms, the problems are twofold. One is that the focused data should be analyzed rapidly online during the interaction between systems and users, for the map size and location can be changed flexibly with IMS. The other is that focused data may be sparse when the map is zoomed in. In general, EM algorithm, a commonly-used probabilistic density approximator, is not robust to sparseness and it takes long time for model construction. Parzen window is also a simple, well-known technique but it requires many kernels that make calculation costs high. The proposed method is a novel, simple kernel density estimator which is fast for model construction with high robustness to sparse data. The proposed method is based on Parzen window and employs a clustering algorithm inspired by fuzzy ART (Adaptive Resonance Theory) to reduce kernels. From the experimental results, estimation accuracy excels the conventional methods with various benchmarking models.
Author Hagiwara, Masafumi
Hotta, Hajime
Author_xml – sequence: 1
  givenname: Hajime
  surname: Hotta
  fullname: Hotta, Hajime
– sequence: 2
  givenname: Masafumi
  surname: Hagiwara
  fullname: Hagiwara, Masafumi
BookMark eNqNkDFPwzAQhY0ACVo6M7BkZEm4i-04ZqugLRGVuhR1tJzkKgxpgmIDKr-eVOUHMD3pvae7p2_EztquJcauERJE0HebIi6m6yQF0AmCPGETrXIUqRCSc-SnbAQq05LngHDBJt6_AQBiCkJml-x-1TaupWhB3Zfzn7ZxPza4ro2-XXiN5taH6Jn6lprokVrvwj6a-eB2NnT9FTvf2sbT5E_H7GU-Wz88xcvVoniYLmOLWRriDGuhMsuFpW0Gguc64zXmlRC6sqXglRYcFCmoyeaqGpZRXaaDK5RMUWs-ZjfHu46IzEc_fO_3Rqa50KCG9PaY2mpnyq579wbBHMiYTWEGMuZAZvDkUE3-WTVl72jLfwH_YmM8
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/WI-IAT.2009.105
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781424453313
1424453313
EndPage 625
ExternalDocumentID 5284907
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AARBI
ACM
ADPZR
ALMA_UNASSIGNED_HOLDINGS
APO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
GUFHI
IERZE
OCL
RIB
RIC
RIE
RIL
AAWTH
LHSKQ
ID FETCH-LOGICAL-a162t-61d476a34aef60438963d18c449cab43c94307e70dea87c112edb2c9447521993
IEDL.DBID RIE
ISBN 0769538010
9780769538013
IngestDate Wed Aug 27 01:35:24 EDT 2025
Wed Jan 31 06:43:04 EST 2024
Wed Jan 31 06:46:29 EST 2024
IsPeerReviewed false
IsScholarly false
Keywords Soft-computing Approach
Fuzzy ART
Geovisualization
Web Interaction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a162t-61d476a34aef60438963d18c449cab43c94307e70dea87c112edb2c9447521993
PageCount 4
ParticipantIDs ieee_primary_5284907
acm_books_10_1109_WI_IAT_2009_105
acm_books_10_1109_WI_IAT_2009_105_brief
PublicationCentury 2000
PublicationDate 20090915
2009-Sept.
PublicationDateYYYYMMDD 2009-09-15
2009-09-01
PublicationDate_xml – month: 09
  year: 2009
  text: 20090915
  day: 15
PublicationDecade 2000
PublicationPlace Washington, DC, USA
PublicationPlace_xml – name: Washington, DC, USA
PublicationSeriesTitle ACM Conferences
PublicationTitle Proceedings of the 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology - Volume 01
PublicationTitleAbbrev WIIAT
PublicationYear 2009
Publisher IEEE Computer Society
IEEE
Publisher_xml – name: IEEE Computer Society
– name: IEEE
SSID ssj0001120456
Score 1.4463004
Snippet Visualization of geographic log-data is one of the key issues on geovisualization, which is defined as a research field of visualizing geographic information....
SourceID ieee
acm
SourceType Publisher
StartPage 622
SubjectTerms Clustering algorithms
Computing methodologies -- Artificial intelligence -- Knowledge representation and reasoning -- Probabilistic reasoning
Computing methodologies -- Artificial intelligence -- Knowledge representation and reasoning -- Vagueness and fuzzy logic
Computing methodologies -- Modeling and simulation -- Model development and analysis -- Modeling methodologies
Costs
Data analysis
Data visualization
Fuzzy ART
Geovisualization
Graphics
Human-centered computing -- Collaborative and social computing -- Collaborative and social computing systems and tools
Human-centered computing -- Human computer interaction (HCI)
Human-centered computing -- Human computer interaction (HCI) -- Interaction paradigms -- Web-based interaction
Information systems -- Information retrieval -- Search engine architectures and scalability -- Peer-to-peer retrieval
Information systems -- World Wide Web -- Web applications
Information systems -- World Wide Web -- Web searching and information discovery
Information systems -- World Wide Web -- Web services
Kernel
Probability density function
Resonance
Robustness
Social and professional topics -- Computing -- technology policy -- Government technology policy
Soft-computing Approach
Subspace constraints
Web Interaction
Title Online Geovisualization with Fast Kernel Density Estimator
URI https://ieeexplore.ieee.org/document/5284907
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4AJ0-oYMRX1sTEi4W2TB_rzSgIGowHCNyafUwTohQDxUR_vbttgWhM9NZO9rCZ7OzsPL5vCLlQArgn3dhiEHsWoAIrRH2W49CTCsATEBiA8-DJ743gYeJNSuRqg4VBxKz5DJvmM6vlq7lcmVRZy9N3KTPQ8XIQ-jlWa5tPcQyxup9H5kybsQ40CoKd9X-7oPZxbNYa963-zTDnq3TM7Loyl7NvE1YyB9OtksF6a3lfyUtzlYqm_PzB2vjfve-S-hbKR583TmqPlDDZJ9X1LAdamHaNXOeco_Qe5-_TpUFa5vhMahK1tMuXKX3ERYKv9M60vKcftKMvh5kJ2etk1O0Mb3tWMVfB4o7vpjpaVBD4vA0cY99UArURKieUAExyAW1pKNkDDGyFPAyk1iwq4WopBNrZ6wfNAakk8wQPCXUkSCaFrVyQ4DDFsgqz7SqXo0ShGuRc6zUyAcMyyuINm0XjfqR1bwZgMi3zGuTyzzWRWEwxbpCaUWz0lhNxRIVOj34XH5OdvPRjGsJOSCVdrPBUvyBScZYdnS8sk73Z
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB60HvTkq2J9riB4MTVJJ0nXm6i11bZ4qOgt7GMCRW2lTQX99e4maYsi6C0ZQliGnZ2dx_cNwLGWKALlJw7HJHCQNDp1Mns5qQdKIwYSIwtw7nTD5gPePgVPC3A6w8IQUdZ8RlX7mNXy9VBNbKrsLDBnKbfQ8aUAzX9ytNY8o-JZavUwj825MWQTahQUO9P3WkHu47n87LHltC56OWOlZ6fXLQr1-m3GSuZiGqvQmS4u7yx5rk5SWVWfP3gb_7v6NSjPwXzsfuam1mGBBhuwOp3mwArj3oTznHWU3dDwvT-2WMscoclsqpY1xDhldzQa0Au7sk3v6Qe7NsfDqw3ay_DQuO5dNp1isoIjvNBPTbyoMQpFDQUloa0FGjPUXl0hciUk1pQlZY8ocjWJeqSMZklL30gxMu7eXGm2oDQYDmgbmKdQcSVd7aNCj2ue1ZhdX_uCFEldgSOj19iGDOM4izhcHj-2YqN7OwKTG1lQgZM_v4nlqE9JBTatYuO3nIojLnS687v4EJabvU47bre6d7uwkheCbHvYHpTS0YT2zX0ilQfZNvoCUm3BJg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+2009+IEEE%2FWIC%2FACM+International+Joint+Conference+on+Web+Intelligence+and+Intelligent+Agent+Technology.+Volume+1&rft.atitle=Online+Geovisualization+with+Fast+Kernel+Density+Estimator&rft.au=Hotta%2C+Hajime&rft.au=Hagiwara%2C+Masafumi&rft.date=2009-09-01&rft.pub=IEEE&rft.isbn=9780769538013&rft.volume=1&rft.spage=622&rft.epage=625&rft_id=info:doi/10.1109%2FWI-IAT.2009.105&rft.externalDocID=5284907
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780769538013/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780769538013/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780769538013/sc.gif&client=summon&freeimage=true