Leveraging Network Properties for Trust Evaluation in Multi-agent Systems

In this paper, we present a collective classification approach for identifying untrustworthy individuals in multi-agent communities from a combination of observable features and network connections. Under the assumption that data are organized as independent and identically distributed (i.i.d.)sampl...

Full description

Saved in:
Bibliographic Details
Published in2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology Vol. 2; pp. 288 - 295
Main Authors Xi Wang, Maghami, M., Sukthankar, G.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.08.2011
Subjects
Online AccessGet full text
ISBN9781457713736
145771373X
DOI10.1109/WI-IAT.2011.217

Cover

Abstract In this paper, we present a collective classification approach for identifying untrustworthy individuals in multi-agent communities from a combination of observable features and network connections. Under the assumption that data are organized as independent and identically distributed (i.i.d.)samples, traditional classification is typically performed on each object independently, without considering the underlying network connecting the instances. In collective classification, a set of relational features, based on the connections between instances, is used to augment the feature vector used in classification. This approach can perform particularly well when the underlying data exhibits homophily, a propensity for similar items to be connected. We suggest that in many cases human communities exhibit homophily in trust levels since shared attitudes toward trust can facilitate the formation and maintenance of bonds, in the same way that other types of shared beliefs and value systems do. Hence, knowledge of an agent's connections provides a valuable cue that can assist in the identification of untrustworthy individuals who are misrepresenting themselves by modifying their observable information. This paper presents results that demonstrate that our proposed trust evaluation method is robust in cases where a large percentage of the individuals present misleading information.
AbstractList In this paper, we present a collective classification approach for identifying untrustworthy individuals in multi-agent communities from a combination of observable features and network connections. Under the assumption that data are organized as independent and identically distributed (i.i.d.)samples, traditional classification is typically performed on each object independently, without considering the underlying network connecting the instances. In collective classification, a set of relational features, based on the connections between instances, is used to augment the feature vector used in classification. This approach can perform particularly well when the underlying data exhibits homophily, a propensity for similar items to be connected. We suggest that in many cases human communities exhibit homophily in trust levels since shared attitudes toward trust can facilitate the formation and maintenance of bonds, in the same way that other types of shared beliefs and value systems do. Hence, knowledge of an agent's connections provides a valuable cue that can assist in the identification of untrustworthy individuals who are misrepresenting themselves by modifying their observable information. This paper presents results that demonstrate that our proposed trust evaluation method is robust in cases where a large percentage of the individuals present misleading information.
Author Maghami, M.
Sukthankar, G.
Xi Wang
Author_xml – sequence: 1
  surname: Xi Wang
  fullname: Xi Wang
  email: xiwang@eecs.ucf.edu
  organization: Dept. of EECS, Univ. of Central Florida, Orlando, FL, USA
– sequence: 2
  givenname: M.
  surname: Maghami
  fullname: Maghami, M.
  email: maghami@cs.ucf.edu
  organization: Dept. of EECS, Univ. of Central Florida, Orlando, FL, USA
– sequence: 3
  givenname: G.
  surname: Sukthankar
  fullname: Sukthankar, G.
  email: gitars@eecs.ucf.edu
  organization: Dept. of EECS, Univ. of Central Florida, Orlando, FL, USA
BookMark eNotjL1OwzAYAI0ACSiZGVj8Agn-bMeux6oqJVL5kQhirJzkS2RIk8p2ivr2IOCW0y13Rc6GcUBCboBlAMzcvRdpsSgzzgAyDvqEJEbPmVYmlzkIefrbIHOtQWihLkgSwgf7QSljDFySYoMH9LZzQ0efMH6N_pO--HGPPjoMtB09Lf0UIl0dbD_Z6MaBuoE-Tn10qe1wiPT1GCLuwjU5b20fMPn3jLzdr8rlQ7p5XhfLxSa1oHhMBbbI7NyibFoBmlecg9GyASmtQcOsglyKKme8rQCMFIKLHBqUtq4aVtdiRm7_vg4Rt3vvdtYft4pJpg0X32-uT_Y
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/WI-IAT.2011.217
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9780769545134
0769545130
EndPage 295
ExternalDocumentID 6040792
Genre orig-research
GroupedDBID 6IE
6IL
ACM
ALMA_UNASSIGNED_HOLDINGS
APO
CBEJK
GUFHI
LHSKQ
RIB
RIC
RIE
RIL
ID FETCH-LOGICAL-a162t-3efe0a8ae4df3172b221974d144a9e90a61543b502fb1194332351de4acbd0cc3
IEDL.DBID RIE
ISBN 9781457713736
145771373X
IngestDate Wed Aug 27 02:48:18 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a162t-3efe0a8ae4df3172b221974d144a9e90a61543b502fb1194332351de4acbd0cc3
PageCount 8
ParticipantIDs ieee_primary_6040792
PublicationCentury 2000
PublicationDate 2011-Aug.
PublicationDateYYYYMMDD 2011-08-01
PublicationDate_xml – month: 08
  year: 2011
  text: 2011-Aug.
PublicationDecade 2010
PublicationTitle 2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology
PublicationTitleAbbrev wi-iat
PublicationYear 2011
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000669991
ssj0001120470
Score 1.5266356
Snippet In this paper, we present a collective classification approach for identifying untrustworthy individuals in multi-agent communities from a combination of...
SourceID ieee
SourceType Publisher
StartPage 288
SubjectTerms Accuracy
agent reputation and trust
collective classification
Communities
Correlation
homophily
Humans
Logistics
Robustness
Training
Title Leveraging Network Properties for Trust Evaluation in Multi-agent Systems
URI https://ieeexplore.ieee.org/document/6040792
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV27TsMwFLVKJ6YCLeItD4y49StOPCLUqkVQMbSiW-XENxJCSitIF74e23lUIAa2PBQpsW58jq_vORehW55TDWAMsRQ4kQ7hiMkTQ7TJHbpbnx0Lbp9zNV3Kx1W06qC7VgsDAKH4DIb-MOzl202286mykXIRF2s34R7Eiaq0Wm0-xUGn5zr7_ArjVMY0aLmi2C3FYrFqLJ7qc1Vb_TCqR68zMrtfVJaenP3stRKgZtJDz81LVhUm78NdmQ6zr1_-jf_9iiM02Iv68EsLV8eoA8UJ6jVdHXD9k_fR7AlceIfmRXheFYn757a-ABs-sSO5eOGFGnjcGoXjtwIHJS8xXqmFaxv0AVpOxouHKakbLhDDFC-JgByoSQxImztewVPu5rNYWrfoMho0NY7-SJFGlOcpY9pbn4mIWZAmSy3NMnGKusWmgDOEJTAjRJwrYZU07j41maMDvixQ84irc9T3I7PeVp4a63pQLv6-fIkOm1wuZVeoW37s4NqRgTK9CVHwDbGlrvo
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWqcoATS4vY8YEjbr0lqY8ItWqgrTikorfKiScSQmorSC98PbazVCAO3LIoUmJN_J7H894gdMdzqgC0JoYCJ9IiHNH5QBOlc4vuxmXHvNvnLBzP5dMiWLTQfaOFAQBffAY9d-j38s0627pUWT-0ERcpO-HuBVLKoFRrNRkVC56O7ewyLIxTGVGv5goiuxiLxKI2earOw8rsh1HVf41J_JCUpp6c_ey24sFmdIim9WuWNSbvvW2R9rKvXw6O__2OI9TdyfrwSwNYx6gFqxN0WPd1wNVv3kHxBGyA-_ZFeFaWibvnNq4EGz6xpbk4cVINPGyswvHbCnstL9FOq4UrI_Qumo-GyeOYVC0XiGYhL4iAHKgeaJAmt8yCp9zOaJE0dtmlFSiqLQGSIg0oz1PGlDM_EwEzIHWWGppl4hS1V-sVnCEsgWkhojwUJpTa3qc6s4TAFQYqHvDwHHXcyCw3pavGshqUi78v36L9cTKdLCfx7PkSHdSZXcquULv42MK1pQZFeuMj4hsQNLJH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+IEEE%2FWIC%2FACM+International+Conferences+on+Web+Intelligence+and+Intelligent+Agent+Technology&rft.atitle=Leveraging+Network+Properties+for+Trust+Evaluation+in+Multi-agent+Systems&rft.au=Xi+Wang&rft.au=Maghami%2C+M.&rft.au=Sukthankar%2C+G.&rft.date=2011-08-01&rft.pub=IEEE&rft.isbn=9781457713736&rft.volume=2&rft.spage=288&rft.epage=295&rft_id=info:doi/10.1109%2FWI-IAT.2011.217&rft.externalDocID=6040792
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457713736/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457713736/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457713736/sc.gif&client=summon&freeimage=true