A Study of Reinforcement Learning in a New Multiagent Domain

RoboCup Keepaway is one of the most challenging multiagent systems (MAS) where a team of keepers tries to keep the ball away from the team of takers. Most of current works concentrate on the learning of keeper, not the learning of taker, which is also a great challenge to the application of reinforc...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology - Volume 02 Vol. 2; pp. 154 - 161
Main Authors Min, Hua-Qing, Zeng, Jia-An, Chen, Jian, Zhu, Jin-Hui
Format Conference Proceeding
LanguageEnglish
Published Washington, DC, USA IEEE Computer Society 09.12.2008
IEEE
SeriesACM Conferences
Subjects
Online AccessGet full text
ISBN9780769534961
0769534961
DOI10.1109/WIIAT.2008.114

Cover

Abstract RoboCup Keepaway is one of the most challenging multiagent systems (MAS) where a team of keepers tries to keep the ball away from the team of takers. Most of current works concentrate on the learning of keeper, not the learning of taker, which is also a great challenge to the application of reinforcement learning (RL). In this paper, we propose a task named takeaway for takers and study the learning of them. We employ an initial learning algorithm called Update on Steps (UoS) for takers and demonstrate that this algorithm has two main faults including action oscillation and reliance on designer's experience. Thereafter we present a novel RL algorithm called Dynamic CMAC Advantage Learning (DCMAC-AL). It makes use of advantage ($\lambda$) learning to calculate value function as well as CMAC to generalize state space, and creates novel features based on Bellman error to improve the precision of CMAC. Empirical results show that takers with DCMAC-AL can learn efficiently.
AbstractList RoboCup Keepaway is one of the most challenging multiagent systems (MAS) where a team of keepers tries to keep the ball away from the team of takers. Most of current works concentrate on the learning of keeper, not the learning of taker, which is also a great challenge to the application of reinforcement learning (RL). In this paper, we propose a task named takeaway for takers and study the learning of them. We employ an initial learning algorithm called Update on Steps (UoS) for takers and demonstrate that this algorithm has two main faults including action oscillation and reliance on designer's experience. Thereafter we present a novel RL algorithm called dynamic CMAC advantage learning (DCMAC-AL). It makes use of advantage(lambda) learning to calculate value function as well as CMAC to generalize state space, and creates novel features based on Bellman error to improve the precision of CMAC. Empirical results show that takers with DCMAC- AL can learn efficiently.
Author Zhu, Jin-Hui
Chen, Jian
Min, Hua-Qing
Zeng, Jia-An
Author_xml – sequence: 1
  givenname: Hua-Qing
  surname: Min
  fullname: Min, Hua-Qing
– sequence: 2
  givenname: Jia-An
  surname: Zeng
  fullname: Zeng, Jia-An
– sequence: 3
  givenname: Jian
  surname: Chen
  fullname: Chen, Jian
– sequence: 4
  givenname: Jin-Hui
  surname: Zhu
  fullname: Zhu, Jin-Hui
BookMark eNqNkE1Lw0AYhBdUUGuvXrzszVPqux_JJuCl1K9CVNCKx-VN8qasNhtJUqT_3o31B3gahnkYhjllh771xNi5gJkQkF29L5fz1UwCpMHrAzbNTAomyWKls0Qcs2nffwCAEBJ0rE_Y9Zy_Dttqx9uav5DzdduV1JAfeE7YeefX3HmO_Im--eN2Mzhcj-FN26DzZ-yoxk1P0z-dsLe729XiIcqf75eLeR6hSGCIMkFlUkhShKhiNBWFTUrLMEli8Ko0qdJpUJmWEiod2KIycVqaWCMmasIu9r2OiOxX5xrsdlYbDYkY02ifYtnYom0_eyvAjm_Y3zfs-Ebw2hadozrwl__j1Q84yGBY
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/WIIAT.2008.114
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 161
ExternalDocumentID 4740616
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AARBI
ACM
ADPZR
ALMA_UNASSIGNED_HOLDINGS
APO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
GUFHI
IERZE
OCL
RIB
RIC
RIE
RIL
AAWTH
LHSKQ
ID FETCH-LOGICAL-a160t-91ec6b2e3eaa35a7de7803423492a5a73c7834873c28c20d4b2ebd758c754aa63
IEDL.DBID RIE
ISBN 9780769534961
0769534961
IngestDate Wed Aug 27 02:16:22 EDT 2025
Wed Jan 31 06:42:20 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a160t-91ec6b2e3eaa35a7de7803423492a5a73c7834873c28c20d4b2ebd758c754aa63
PageCount 8
ParticipantIDs acm_books_10_1109_WIIAT_2008_114
acm_books_10_1109_WIIAT_2008_114_brief
ieee_primary_4740616
PublicationCentury 2000
PublicationDate 20081209
2008-Dec.
PublicationDateYYYYMMDD 2008-12-09
2008-12-01
PublicationDate_xml – month: 12
  year: 2008
  text: 20081209
  day: 09
PublicationDecade 2000
PublicationPlace Washington, DC, USA
PublicationPlace_xml – name: Washington, DC, USA
PublicationSeriesTitle ACM Conferences
PublicationTitle Proceedings of the 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology - Volume 02
PublicationTitleAbbrev WIIATW
PublicationYear 2008
Publisher IEEE Computer Society
IEEE
Publisher_xml – name: IEEE Computer Society
– name: IEEE
SSID ssj0001120454
Score 1.4297345
Snippet RoboCup Keepaway is one of the most challenging multiagent systems (MAS) where a team of keepers tries to keep the ball away from the team of takers. Most of...
SourceID ieee
acm
SourceType Publisher
StartPage 154
SubjectTerms Algorithm design and analysis
Computer science
Computing methodologies -- Artificial intelligence -- Distributed artificial intelligence -- Multi-agent systems
Computing methodologies -- Artificial intelligence -- Knowledge representation and reasoning
Computing methodologies -- Machine learning
Heuristic algorithms
Intelligent agent
Learning systems
Multiagent systems
Real time systems
State-space methods
Testing
Theory of computation -- Logic
Tiles
Title A Study of Reinforcement Learning in a New Multiagent Domain
URI https://ieeexplore.ieee.org/document/4740616
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH5sO3mauonzFzmIJ7slbZq24GWoYxMmIhvuVpI0lSFrx-wO-tebpN2GIigU2rQ5hNc2L-_l-74HcElkoA_lOlGiAocasSGh18UOo5jrByzBzBCcx49sOKUPM39Wg-stF0YpZcFnqmsu7V5-ksu1SZX1aGDcD6tDPQhZydXa5VOIEVanZWQe-UYHnVQCO9t2JdpIcNR7GY36kxJKSQyDp87l4luBFetfBk0Yb0ZWwkreuutCdOXnD9HG_w59H9o7Jh962vqoA6ip7BCam1IOqPqzW3DTRwZR-IHyFD0rq6YqbeIQVQKsr2ieIY70nIgsZ5cbSha6yxd8nrVhOrif3A6dqrCCwwnDhZ7glGTCVZ7i3PN5oF9TaKUAaeRy3fakKb8R6rMbShcnVPcViY4sZOBTzpl3BI0sz9QxoIBEMhSJJIleJwifcZxilXoyxaHA3As7gLRlYxMxvMc24MBRbI1fFsDUxu_A1V9dYrGaq7QDLWPYeFnqcMSVTU9-v30KexbbYaEnZ9AoVmt1rhcQhbiwX84XyE28LA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH4BPOgJFYz4swfjyUG3dd2WeCEqAQViDERuS9t1hhiGwXHQv962GxCNiSZLtm49NG9bX9_r930P4MIWvjqkY4Wx9C2ixYa4WhdblGCmHtAYU01wHgxpd0zuJ96kBFdrLoyU0oDPZFNfmr38eC6WOlXWIr52P7QMWx4hxMvZWpuMiq2l1Ukem4eeVkK3C4mddbuQbbRx2Hru9dqjHExpaw5PmYnZtxIrxsN0qjBYjS0Hlrw2lxlvis8fso3_Hfwu1DdcPvS49lJ7UJLpPlRXxRxQ8W_X4LqNNKbwA80T9CSNnqowqUNUSLC-oGmKGFKzIjKsXaZJWeh2PmPTtA7jzt3opmsVpRUsZlOcqSlOCsod6UrGXI_56kUFRgyQhA5TbVfoAhyBOjuBcHBMVF8eq9hC-B5hjLoHUEnnqTwE5NuhCHgs7FitFLhHGU6wTFyR4IBj5gYNQMqykY4Z3iMTcuAwMsbPS2Aq4zfg8q8uEV9MZdKAmjZs9JYrcUSFTY9-v30O293RoB_1e8OHY9gxSA8DRDmBSrZYylO1nMj4mfmKvgDYWL95
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+2008+IEEE%2FWIC%2FACM+International+Conference+on+Web+Intelligence+and+Intelligent+Agent+Technology+-+Volume+02&rft.atitle=A+Study+of+Reinforcement+Learning+in+a+New+Multiagent+Domain&rft.au=Min%2C+Hua-Qing&rft.au=Zeng%2C+Jia-An&rft.au=Chen%2C+Jian&rft.au=Zhu%2C+Jin-Hui&rft.series=ACM+Conferences&rft.date=2008-12-09&rft.pub=IEEE+Computer+Society&rft.isbn=9780769534961&rft.spage=154&rft.epage=161&rft_id=info:doi/10.1109%2FWIIAT.2008.114
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780769534961/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780769534961/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780769534961/sc.gif&client=summon&freeimage=true