A Study of Reinforcement Learning in a New Multiagent Domain
RoboCup Keepaway is one of the most challenging multiagent systems (MAS) where a team of keepers tries to keep the ball away from the team of takers. Most of current works concentrate on the learning of keeper, not the learning of taker, which is also a great challenge to the application of reinforc...
Saved in:
| Published in | Proceedings of the 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology - Volume 02 Vol. 2; pp. 154 - 161 |
|---|---|
| Main Authors | , , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
Washington, DC, USA
IEEE Computer Society
09.12.2008
IEEE |
| Series | ACM Conferences |
| Subjects | |
| Online Access | Get full text |
| ISBN | 9780769534961 0769534961 |
| DOI | 10.1109/WIIAT.2008.114 |
Cover
| Abstract | RoboCup Keepaway is one of the most challenging multiagent systems (MAS) where a team of keepers tries to keep the ball away from the team of takers. Most of current works concentrate on the learning of keeper, not the learning of taker, which is also a great challenge to the application of reinforcement learning (RL). In this paper, we propose a task named takeaway for takers and study the learning of them. We employ an initial learning algorithm called Update on Steps (UoS) for takers and demonstrate that this algorithm has two main faults including action oscillation and reliance on designer's experience. Thereafter we present a novel RL algorithm called Dynamic CMAC Advantage Learning (DCMAC-AL). It makes use of advantage ($\lambda$) learning to calculate value function as well as CMAC to generalize state space, and creates novel features based on Bellman error to improve the precision of CMAC. Empirical results show that takers with DCMAC-AL can learn efficiently. |
|---|---|
| AbstractList | RoboCup Keepaway is one of the most challenging multiagent systems (MAS) where a team of keepers tries to keep the ball away from the team of takers. Most of current works concentrate on the learning of keeper, not the learning of taker, which is also a great challenge to the application of reinforcement learning (RL). In this paper, we propose a task named takeaway for takers and study the learning of them. We employ an initial learning algorithm called Update on Steps (UoS) for takers and demonstrate that this algorithm has two main faults including action oscillation and reliance on designer's experience. Thereafter we present a novel RL algorithm called dynamic CMAC advantage learning (DCMAC-AL). It makes use of advantage(lambda) learning to calculate value function as well as CMAC to generalize state space, and creates novel features based on Bellman error to improve the precision of CMAC. Empirical results show that takers with DCMAC- AL can learn efficiently. |
| Author | Zhu, Jin-Hui Chen, Jian Min, Hua-Qing Zeng, Jia-An |
| Author_xml | – sequence: 1 givenname: Hua-Qing surname: Min fullname: Min, Hua-Qing – sequence: 2 givenname: Jia-An surname: Zeng fullname: Zeng, Jia-An – sequence: 3 givenname: Jian surname: Chen fullname: Chen, Jian – sequence: 4 givenname: Jin-Hui surname: Zhu fullname: Zhu, Jin-Hui |
| BookMark | eNqNkE1Lw0AYhBdUUGuvXrzszVPqux_JJuCl1K9CVNCKx-VN8qasNhtJUqT_3o31B3gahnkYhjllh771xNi5gJkQkF29L5fz1UwCpMHrAzbNTAomyWKls0Qcs2nffwCAEBJ0rE_Y9Zy_Dttqx9uav5DzdduV1JAfeE7YeefX3HmO_Im--eN2Mzhcj-FN26DzZ-yoxk1P0z-dsLe729XiIcqf75eLeR6hSGCIMkFlUkhShKhiNBWFTUrLMEli8Ko0qdJpUJmWEiod2KIycVqaWCMmasIu9r2OiOxX5xrsdlYbDYkY02ifYtnYom0_eyvAjm_Y3zfs-Ebw2hadozrwl__j1Q84yGBY |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/WIIAT.2008.114 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EndPage | 161 |
| ExternalDocumentID | 4740616 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AARBI ACM ADPZR ALMA_UNASSIGNED_HOLDINGS APO BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK GUFHI IERZE OCL RIB RIC RIE RIL AAWTH LHSKQ |
| ID | FETCH-LOGICAL-a160t-91ec6b2e3eaa35a7de7803423492a5a73c7834873c28c20d4b2ebd758c754aa63 |
| IEDL.DBID | RIE |
| ISBN | 9780769534961 0769534961 |
| IngestDate | Wed Aug 27 02:16:22 EDT 2025 Wed Jan 31 06:42:20 EST 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a160t-91ec6b2e3eaa35a7de7803423492a5a73c7834873c28c20d4b2ebd758c754aa63 |
| PageCount | 8 |
| ParticipantIDs | acm_books_10_1109_WIIAT_2008_114 acm_books_10_1109_WIIAT_2008_114_brief ieee_primary_4740616 |
| PublicationCentury | 2000 |
| PublicationDate | 20081209 2008-Dec. |
| PublicationDateYYYYMMDD | 2008-12-09 2008-12-01 |
| PublicationDate_xml | – month: 12 year: 2008 text: 20081209 day: 09 |
| PublicationDecade | 2000 |
| PublicationPlace | Washington, DC, USA |
| PublicationPlace_xml | – name: Washington, DC, USA |
| PublicationSeriesTitle | ACM Conferences |
| PublicationTitle | Proceedings of the 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology - Volume 02 |
| PublicationTitleAbbrev | WIIATW |
| PublicationYear | 2008 |
| Publisher | IEEE Computer Society IEEE |
| Publisher_xml | – name: IEEE Computer Society – name: IEEE |
| SSID | ssj0001120454 |
| Score | 1.4297345 |
| Snippet | RoboCup Keepaway is one of the most challenging multiagent systems (MAS) where a team of keepers tries to keep the ball away from the team of takers. Most of... |
| SourceID | ieee acm |
| SourceType | Publisher |
| StartPage | 154 |
| SubjectTerms | Algorithm design and analysis Computer science Computing methodologies -- Artificial intelligence -- Distributed artificial intelligence -- Multi-agent systems Computing methodologies -- Artificial intelligence -- Knowledge representation and reasoning Computing methodologies -- Machine learning Heuristic algorithms Intelligent agent Learning systems Multiagent systems Real time systems State-space methods Testing Theory of computation -- Logic Tiles |
| Title | A Study of Reinforcement Learning in a New Multiagent Domain |
| URI | https://ieeexplore.ieee.org/document/4740616 |
| Volume | 2 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH5sO3mauonzFzmIJ7slbZq24GWoYxMmIhvuVpI0lSFrx-wO-tebpN2GIigU2rQ5hNc2L-_l-74HcElkoA_lOlGiAocasSGh18UOo5jrByzBzBCcx49sOKUPM39Wg-stF0YpZcFnqmsu7V5-ksu1SZX1aGDcD6tDPQhZydXa5VOIEVanZWQe-UYHnVQCO9t2JdpIcNR7GY36kxJKSQyDp87l4luBFetfBk0Yb0ZWwkreuutCdOXnD9HG_w59H9o7Jh962vqoA6ip7BCam1IOqPqzW3DTRwZR-IHyFD0rq6YqbeIQVQKsr2ieIY70nIgsZ5cbSha6yxd8nrVhOrif3A6dqrCCwwnDhZ7glGTCVZ7i3PN5oF9TaKUAaeRy3fakKb8R6rMbShcnVPcViY4sZOBTzpl3BI0sz9QxoIBEMhSJJIleJwifcZxilXoyxaHA3As7gLRlYxMxvMc24MBRbI1fFsDUxu_A1V9dYrGaq7QDLWPYeFnqcMSVTU9-v30KexbbYaEnZ9AoVmt1rhcQhbiwX84XyE28LA |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH4BPOgJFYz4swfjyUG3dd2WeCEqAQViDERuS9t1hhiGwXHQv962GxCNiSZLtm49NG9bX9_r930P4MIWvjqkY4Wx9C2ixYa4WhdblGCmHtAYU01wHgxpd0zuJ96kBFdrLoyU0oDPZFNfmr38eC6WOlXWIr52P7QMWx4hxMvZWpuMiq2l1Ukem4eeVkK3C4mddbuQbbRx2Hru9dqjHExpaw5PmYnZtxIrxsN0qjBYjS0Hlrw2lxlvis8fso3_Hfwu1DdcPvS49lJ7UJLpPlRXxRxQ8W_X4LqNNKbwA80T9CSNnqowqUNUSLC-oGmKGFKzIjKsXaZJWeh2PmPTtA7jzt3opmsVpRUsZlOcqSlOCsod6UrGXI_56kUFRgyQhA5TbVfoAhyBOjuBcHBMVF8eq9hC-B5hjLoHUEnnqTwE5NuhCHgs7FitFLhHGU6wTFyR4IBj5gYNQMqykY4Z3iMTcuAwMsbPS2Aq4zfg8q8uEV9MZdKAmjZs9JYrcUSFTY9-v30O293RoB_1e8OHY9gxSA8DRDmBSrZYylO1nMj4mfmKvgDYWL95 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+2008+IEEE%2FWIC%2FACM+International+Conference+on+Web+Intelligence+and+Intelligent+Agent+Technology+-+Volume+02&rft.atitle=A+Study+of+Reinforcement+Learning+in+a+New+Multiagent+Domain&rft.au=Min%2C+Hua-Qing&rft.au=Zeng%2C+Jia-An&rft.au=Chen%2C+Jian&rft.au=Zhu%2C+Jin-Hui&rft.series=ACM+Conferences&rft.date=2008-12-09&rft.pub=IEEE+Computer+Society&rft.isbn=9780769534961&rft.spage=154&rft.epage=161&rft_id=info:doi/10.1109%2FWIIAT.2008.114 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780769534961/lc.gif&client=summon&freeimage=true |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780769534961/mc.gif&client=summon&freeimage=true |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780769534961/sc.gif&client=summon&freeimage=true |