Memristor-based approximated computation

The cessation of Moore's Law has limited further improvements in power efficiency. In recent years, the physical realization of the memristor has demonstrated a promising solution to ultra-integrated hardware realization of neural networks, which can be leveraged for better performance and powe...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the 2013 International Symposium on Low Power Electronics and Design pp. 242 - 247
Main Authors Li, Boxun, Shan, Yi, Hu, Miao, Wang, Yu, Chen, Yiran, Yang, Huazhong
Format Conference Proceeding
LanguageEnglish
Published Piscataway, NJ, USA IEEE Press 04.09.2013
SeriesACM Conferences
Subjects
Online AccessGet full text
ISBN1479912352
9781479912353
DOI10.5555/2648668.2648729

Cover

Abstract The cessation of Moore's Law has limited further improvements in power efficiency. In recent years, the physical realization of the memristor has demonstrated a promising solution to ultra-integrated hardware realization of neural networks, which can be leveraged for better performance and power efficiency gains. In this work, we introduce a power efficient framework for approximated computations by taking advantage of the memristor-based multilayer neural networks. A programmable memristor approximated computation unit (Memristor ACU) is introduced first to accelerate approximated computation and a memristor-based approximated computation framework with scalability is proposed on top of the Memristor ACU. We also introduce a parameter configuration algorithm of the Memristor ACU and a feedback state tuning circuit to program the Memristor ACU effectively. Our simulation results show that the maximum error of the Memristor ACU for 6 common complex functions is only 1.87% while the state tuning circuit can achieve 12-bit precision. The implementation of HMAX model atop our proposed memristor-based approximated computation framework demonstrates 22X power efficiency improvements than its pure digital implementation counterpart.
AbstractList The cessation of Moore's Law has limited further improvements in power efficiency. In recent years, the physical realization of the memristor has demonstrated a promising solution to ultra-integrated hardware realization of neural networks, which can be leveraged for better performance and power efficiency gains. In this work, we introduce a power efficient framework for approximated computations by taking advantage of the memristor-based multilayer neural networks. A programmable memristor approximated computation unit (Memristor ACU) is introduced first to accelerate approximated computation and a memristor-based approximated computation framework with scalability is proposed on top of the Memristor ACU. We also introduce a parameter configuration algorithm of the Memristor ACU and a feedback state tuning circuit to program the Memristor ACU effectively. Our simulation results show that the maximum error of the Memristor ACU for 6 common complex functions is only 1.87% while the state tuning circuit can achieve 12-bit precision. The implementation of HMAX model atop our proposed memristor-based approximated computation framework demonstrates 22X power efficiency improvements than its pure digital implementation counterpart.
Author Hu, Miao
Yang, Huazhong
Chen, Yiran
Shan, Yi
Wang, Yu
Li, Boxun
Author_xml – sequence: 1
  givenname: Boxun
  surname: Li
  fullname: Li, Boxun
  organization: Tsinghua University, Beijing, China
– sequence: 2
  givenname: Yi
  surname: Shan
  fullname: Shan, Yi
  organization: Tsinghua University, Beijing, China
– sequence: 3
  givenname: Miao
  surname: Hu
  fullname: Hu, Miao
  organization: University of Pittsburgh, Pittsburgh
– sequence: 4
  givenname: Yu
  surname: Wang
  fullname: Wang, Yu
  email: yu-wang@mail.tsinghua.edu.cn
  organization: Tsinghua University, Beijing, China
– sequence: 5
  givenname: Yiran
  surname: Chen
  fullname: Chen, Yiran
  organization: University of Pittsburgh, Pittsburgh
– sequence: 6
  givenname: Huazhong
  surname: Yang
  fullname: Yang, Huazhong
  organization: Tsinghua University, Beijing, China
BookMark eNqNj01LxDAURQMq6IyzdutyNq0vHy9pljKoI4y4mVmHlyaFqm1KU8Gfbwf7A7yby4XDhbNil33qI2N3HEqc8yC0qrSuynMbYS_YiitjLRcSxTXb5PwBANwYVKhu2PYtdmObpzQWnnIM9zQMY_ppO5rmUadu-J5oalN_y64a-spxs_SanZ6fjrt9cXh_ed09HgriaKaCoom6BlM3ILCJIDzZKLEK6A1XGgIF2RhvkYLQlYEKJYASSpGwEjDINdv-_VLdOZ_SZ3Yc3NnMLWZuMZvR8p-o82MbG_kLNKtQZQ
ContentType Conference Proceeding
DOI 10.5555/2648668.2648729
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 247
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-a157t-ae7e6c07cf025fe02ba9e358d5b71460dad3f7b95ad26870853004244a29305d3
ISBN 1479912352
9781479912353
IngestDate Wed Jan 31 06:51:14 EST 2024
Wed Jan 31 06:50:53 EST 2024
IsPeerReviewed false
IsScholarly true
Keywords approximated computation
memristor
neuromorphic
power efficiency
Language English
LinkModel OpenURL
MeetingName ISLPED'13: International Symposium on Low Power Electronics and Design
MergedId FETCHMERGED-LOGICAL-a157t-ae7e6c07cf025fe02ba9e358d5b71460dad3f7b95ad26870853004244a29305d3
PageCount 6
ParticipantIDs acm_books_10_5555_2648668_2648729_brief
acm_books_10_5555_2648668_2648729
PublicationCentury 2000
PublicationDate 20130904
PublicationDateYYYYMMDD 2013-09-04
PublicationDate_xml – month: 09
  year: 2013
  text: 20130904
  day: 04
PublicationDecade 2010
PublicationPlace Piscataway, NJ, USA
PublicationPlace_xml – name: Piscataway, NJ, USA
PublicationSeriesTitle ACM Conferences
PublicationTitle Proceedings of the 2013 International Symposium on Low Power Electronics and Design
PublicationYear 2013
Publisher IEEE Press
Publisher_xml – name: IEEE Press
SSID ssj0001775454
ssj0001456121
Score 2.1692808
Snippet The cessation of Moore's Law has limited further improvements in power efficiency. In recent years, the physical realization of the memristor has demonstrated...
SourceID acm
SourceType Publisher
StartPage 242
SubjectTerms Applied computing -- Physical sciences and engineering -- Electronics
Hardware -- Hardware validation
Hardware -- Integrated circuits -- Logic circuits
Hardware -- Integrated circuits -- Logic circuits -- Arithmetic and datapath circuits
Title Memristor-based approximated computation
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF7Uk5584psKgoJEk-wruSoVESuCCnoKm-wGPbSVtgH11zuT3TRpEHz0sE2WkCU7w8w3Oy9CDmXGojIUhzLBPaYj31NhoDzl05jFgRYmxmzk3q24emTXT_ypagnvsksm6Wn2-W1eyX-oCnNAV8yS_QNlpy-FCbgG-sIIFIaxBX6_1TN308lx5eoHRUtbp3z3H32MzCr66Be4wcw3bIx20p32vxm7cOQ6lMM1eDL9svDAyENVp2358fdXgLimTIV7K2bd-DdlYMD58L2YTt2_2PPV59eafWywvhrWR_lW3DwXVsJh5eUxsEivkY04cziBjSLQ1TJjsM7EkoDZGjAJmDSktnBtJTdtiS2ngkNbhLMt3Tn8MIFFsEiI6BT_wTSYJ_My8m3mXn26hrjQAZPyHgv9cVZm9lXLVwW_3D21hZ9wkbPWEohcsn4Ddzwsk_V6Dzo1uVfInBmskqVGMck1ctyiV6dJr06DXuvk8bL7cHHluT4Yngq4nHjKSCMyX2Y5ANTc-GGqYkN5pHkqQdH5WmmayzTmSocC5C8gsNKjzRRgOZ9rukEWBsOB2SSdUGmhWZjD4DNN0yhLwWLIAiUjgRdb5AC-NEEeHydgH-JuJG43ErcbW-Tox2eSFHgl3_7F23bIYs04u2RhMirMHuC8SbpfkvQL1NpHIw
linkProvider IEEE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+2013+International+Symposium+on+Low+Power+Electronics+and+Design&rft.atitle=Memristor-based+approximated+computation&rft.au=Li%2C+Boxun&rft.au=Shan%2C+Yi&rft.au=Hu%2C+Miao&rft.au=Wang%2C+Yu&rft.series=ACM+Conferences&rft.date=2013-09-04&rft.pub=IEEE+Press&rft.isbn=1479912352&rft.spage=242&rft.epage=247&rft_id=info:doi/10.5555%2F2648668.2648729
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479912353/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479912353/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479912353/sc.gif&client=summon&freeimage=true