DAPPER data aware approximate NoC for GPGPU architectures

High interconnect bandwidth is crucial to achieve better performance in many-core GPGPU architectures that execute highly data parallel applications. The parallel warps of threads running on shader cores generate a high volume of read requests to the main memory due to the limited availability of da...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the Twelfth IEEE/ACM International Symposium on Networks-on-Chip pp. 1 - 8
Main Authors Raparti, Venkata Yaswanth, Pasricha, Sudeep
Format Conference Proceeding
LanguageEnglish
Published Piscataway, NJ, USA IEEE Press 04.10.2018
SeriesACM Conferences
Subjects
Online AccessGet full text
ISBN1538648938
9781538648933
DOI10.5555/3306619.3306626

Cover

Abstract High interconnect bandwidth is crucial to achieve better performance in many-core GPGPU architectures that execute highly data parallel applications. The parallel warps of threads running on shader cores generate a high volume of read requests to the main memory due to the limited availability of data cache space at the shader cores. This leads to scenarios with rapid arrival of reply data from the DRAM, which creates a bottleneck at memory controllers (MCs) that send reply packets back to the requesting cores over the NoC. Coping with such high volumes of data requires NoC architectures that possess high power overhead. To accomplish high bandwidth and low energy communication in GPGPUs, we propose Dapper, a data-aware approximate NoC architecture that increases the utilization of the available bandwidth by using low power single cycle overlay circuits for the reply traffic between MCs and shader cores. Dapper also incorporates a novel MC architecture that leverages the inherent approximability of the data values of certain applications and reduces the number of reply packets injected into the NoC by the MCs. Experimental results show that Dapper reduces the energy consumed in the GPGPU by up to 50% with up to 99% application output accuracy and minimum performance overheads compared to a state-of-the-art approximate NoC architectures.
AbstractList High interconnect bandwidth is crucial to achieve better performance in many-core GPGPU architectures that execute highly data parallel applications. The parallel warps of threads running on shader cores generate a high volume of read requests to the main memory due to the limited availability of data cache space at the shader cores. This leads to scenarios with rapid arrival of reply data from the DRAM, which creates a bottleneck at memory controllers (MCs) that send reply packets back to the requesting cores over the NoC. Coping with such high volumes of data requires NoC architectures that possess high power overhead. To accomplish high bandwidth and low energy communication in GPGPUs, we propose Dapper, a data-aware approximate NoC architecture that increases the utilization of the available bandwidth by using low power single cycle overlay circuits for the reply traffic between MCs and shader cores. Dapper also incorporates a novel MC architecture that leverages the inherent approximability of the data values of certain applications and reduces the number of reply packets injected into the NoC by the MCs. Experimental results show that Dapper reduces the energy consumed in the GPGPU by up to 50% with up to 99% application output accuracy and minimum performance overheads compared to a state-of-the-art approximate NoC architectures.
Author Raparti, Venkata Yaswanth
Pasricha, Sudeep
Author_xml – sequence: 1
  givenname: Venkata Yaswanth
  surname: Raparti
  fullname: Raparti, Venkata Yaswanth
  email: yaswanth@rams.colostate.edu
  organization: Colorado State University
– sequence: 2
  givenname: Sudeep
  surname: Pasricha
  fullname: Pasricha, Sudeep
  email: sudeep@colostate.edu
  organization: Colorado State University
BookMark eNqNjs1OAjEURm8CGgFZ-wpuZrjt7d9dEuTHhERidN20pU0AZRLH948jzAPwbc7my8kZw_DcnDPAk8Bad5sRoTGC6wulGcBYaHJGOSb3ANO2PSKiNE4bLUZw_zLf7Zbvj3BXwlebpz0n8Llafiw21fZt_bqYb6sgtP2t2KSwp6RicCrbIpgd2RQ1WxRqL2UhLDZ0YpZBRlZRZ1dyTpSZkUKiCTxfvSF9-9g0p9YL9P_dvu_2fXd3rW-8-vhzyIX-AH3EQoI
ContentType Conference Proceeding
DOI 10.5555/3306619.3306626
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EndPage 8
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
ABLEC
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-a157t-96cad3c4ba84e7f199837cb597014d22f30f7a65192a2b94b5e8feec3e9903ac3
ISBN 1538648938
9781538648933
IngestDate Wed Jan 31 06:48:12 EST 2024
Wed Jan 31 06:53:49 EST 2024
IsPeerReviewed false
IsScholarly false
Keywords approximate computing
network-on-chip
GPGPU
Language English
LinkModel OpenURL
MeetingName NOCS '18: International Symposium on Networks-on-Chip
MergedId FETCHMERGED-LOGICAL-a157t-96cad3c4ba84e7f199837cb597014d22f30f7a65192a2b94b5e8feec3e9903ac3
PageCount 8
ParticipantIDs acm_books_10_5555_3306619_3306626_brief
acm_books_10_5555_3306619_3306626
PublicationCentury 2000
PublicationDate 20181004
PublicationDateYYYYMMDD 2018-10-04
PublicationDate_xml – month: 10
  year: 2018
  text: 20181004
  day: 04
PublicationDecade 2010
PublicationPlace Piscataway, NJ, USA
PublicationPlace_xml – name: Piscataway, NJ, USA
PublicationSeriesTitle ACM Conferences
PublicationTitle Proceedings of the Twelfth IEEE/ACM International Symposium on Networks-on-Chip
PublicationYear 2018
Publisher IEEE Press
Publisher_xml – name: IEEE Press
SSID ssj0002685651
Score 1.755141
Snippet High interconnect bandwidth is crucial to achieve better performance in many-core GPGPU architectures that execute highly data parallel applications. The...
SourceID acm
SourceType Publisher
StartPage 1
Subtitle data aware approximate NoC for GPGPU architectures
Title DAPPER
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA8qHrwpTvxGQfAwomnTNunBg8yJCMrATfRUkjRB0FWxFdG_3vfWrp1j4EcPaRvKa5JfSN53CDnwmQEu3qVUcMNoYIWjMhQeVUx51qV-EHIMFL66ji4GweVdeNeczTmKLin0kfmcGVfyH1ShDnDFKNk_IFsThQp4BnyhBIShnGJ-Z-4zvboyH5v6--_2yRUPbZThMFVC52pK53fzMUQ_rbchWgmuSx_wnD5ntFN5M4_nz9lpr9edMAO9jC3_tzZ7VIVq36v8HWCp1ck9lb-iD37p65NaW5LDgbD5CbakiS78pmzwysyvjbIRG__NN0SXS2aEKWzkxDroTW6os1bqEC4YBg4SC4hwR6O7H82TeSFZGYVXa8r8SALX6WFUXv2rKlnX-J2XSZuQ6PEUSeQ6zHCCZ-gvk1bT370GqhUyZ7NVsliOb4sMzrv9zgWtzqSgygtFQePIqJSbQCuJExsjFLkwGsQykDVT33ecOaGgubGvfB0HOrTSWWu4hW2fK8PXyEL2nNl1sqec9ZgNJZ7eFKQmiqViIjWS6ZALpuINsg8tT3C-5QnIati7pOpdUvVugxz--E2iAWe3-QtqW2SpAX2bLBSvb3YHeK5C744g-QKoXR_g
linkProvider IEEE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+Twelfth+IEEE%2FACM+International+Symposium+on+Networks-on-Chip&rft.atitle=DAPPER&rft.au=Raparti%2C+Venkata+Yaswanth&rft.au=Pasricha%2C+Sudeep&rft.series=ACM+Conferences&rft.date=2018-10-04&rft.pub=IEEE+Press&rft.isbn=1538648938&rft.spage=1&rft.epage=8&rft_id=info:doi/10.5555%2F3306619.3306626
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781538648933/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781538648933/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781538648933/sc.gif&client=summon&freeimage=true