Computational techniques for multiphase flows
The use of Computational Fluid Dynamics (CFD) has emerged as a powerful tool for the understanding of fluid mechanics in multiphase reactors, which are widely used in the chemical, petroleum, mining, food, beverage and pharmaceutical industries.
Saved in:
Main Authors | , |
---|---|
Format | eBook Book |
Language | English |
Published |
Oxford
Butterworth-Heinemann
2019
Elsevier Science & Technology |
Edition | 2 |
Subjects | |
Online Access | Get full text |
ISBN | 9780081024539 0081024533 |
Cover
Table of Contents:
- Front Cover -- COMPUTATIONAL TECHNIQUES FOR MULTIPHASE FLOWS -- COMPUTATIONAL TECHNIQUES FOR MULTIPHASE FLOWS -- Copyright -- Contents -- Preface to the Second Edition -- Preface to the First Edition -- 1 - Introduction -- 1.1 CLASSIFICATION AND PHENOMENOLOGICAL DISCUSSION -- 1.2 TYPICAL PRACTICAL PROBLEMS INVOLVING MULTIPHASE FLOWS -- 1.3 COMPUTATIONAL FLUID DYNAMICS AS A RESEARCH TOOL FOR MULTIPHASE FLOWS -- 1.4 COMPUTATIONAL FLUID DYNAMICS AS A DESIGN TOOL FOR MULTIPHASE FLOWS -- 1.5 IMPACT OF MULITIPHASE FLOW STUDY ON COMPUTATIONAL FLUID DYNAMICS -- 1.6 SCOPE OF THE BOOK -- 2 - Governing Equations and Boundary Conditions -- 2.1 BASIC CONCEPTS OF FLUID MECHANICS -- 2.2 BACKGROUND OF DIFFERENT APPROACHES -- 2.3 AVERAGING PROCEDURE FOR MULTIPHASE FLOW -- 2.4 EQUATIONS OF MOTION FOR CONTINUOUS PHASE -- 2.4.1 Conservation of Mass -- 2.4.2 Conservation of Momentum -- 2.4.3 Conservation of Energy -- 2.4.4 Interfacial Transport -- 2.4.5 Effective Conservation Equations -- 2.5 COMMENTS AND OBSERVATIONS ON THE GOVERNING EQUATIONS FOR THE TWO-FLUIDLING APPROACH -- 2.6 EQUATIONS OF MOTION FOR DISPERSE PHASE -- 2.7 TURBULENCE IN TRANSPORT PHENOMENA -- 2.7.1 Reynolds-Averaged Equations -- 2.7.1.1 Mixture Model -- 2.7.1.2 Two-Fluid Model -- 2.7.2 Reynolds-Averaged Closure -- 2.7.3 Some Comments on the k-ε Model and Implications of Other Turbulence Models -- 2.7.3.1 Shear Stress Transport (SST) Model -- 2.7.3.2 Reynolds Stress Model -- 2.7.3.3 Near-Wall Treatment -- 2.7.4 Some Comments on Turbulence Modelling of the Disperse Phase -- 2.8 DIFFERENTIAL AND INTEGRAL FORM OF THE TRANSPORT EQUATIONS -- 2.8.1 Mixture Model -- 2.8.2 Two-Fluid Model -- 2.8.3 A Comment on Multifluid Model -- 2.9 BOUNDARY CONDITIONS AND THEIR PHYSICAL INTREPRETATION -- 2.9.1 Comments on Some Wall Boundary Conditions for Multiphase Problems -- 2.10 SUMMARY
- 3.5.2 Particle-Particle Interaction (Four-Way Coupling Concept-Collisions and Turbulent Dispersion of Particles) -- 3.5.2.1 Hard-Sphere Model -- 3.5.2.2 Soft-Sphere Model -- 3.5.3 Basic Numerical Techniques -- 3.5.4 Comments on Sampling Particles for Turbulent Dispersion -- 3.5.5 Some Comments on Attaining Proper Statistical Realisations -- 3.5.5.1 Evaluation of Source Terms for the Continuous Phase -- INTERFACE TRACKING/CAPTURING ALGORITHMS -- 3.6 BASIC CONSIDERATIONS OF INTERFACE TRACKING/CAPTURING METHODS -- 3.6.1 Algorithms Based on Surface Methods: With Comments -- 3.6.1.1 Surface Marker Approaches -- 3.6.1.2 Front Tracking Method -- 3.6.1.3 Intersection Marker Method -- 3.6.2 Algorithms Based on Volume Methods: With Comments -- 3.6.2.1 Markers in Fluid (MAC Formulation) -- 3.6.2.2 Volume of Fluid (VOF) -- 3.6.2.2.1 DONOR-ACCEPTOR FORMULATION -- 3.6.2.2.2 LINE TECHNIQUES (GEOMETRIC RECONSTRUCTION) -- 3.6.2.3 Level Set Method -- 3.6.2.4 Hybrid Methods -- 3.6.3 Computing Surface Tension and Wall Adhesion -- 3.7 SUMMARY -- 4 - Gas-Particle and Liquid-Particle Flows -- 4.1 INTRODUCTION -- 4.1.1 Background -- 4.1.1.1 Gas-Particle Flows -- Liquid-Particle Flows -- 4.1.2 Classification of Gas-Particle Flows -- 4.1.3 Particle Loading and Stokes Number -- 4.1.4 Particle Dispersion due to Turbulence -- 4.1.5 Some Physical Characteristics of Flow in Sedimentation Tank -- 4.1.6 Some Physical Characteristics of Slurry Transport -- 4.2 MULTIPHASE MODELS FOR GAS-PARTICLE FLOWS -- 4.2.1 Eulerian-Lagrangian Framework -- 4.2.2 Eulerian-Eulerian Framework -- 4.2.3 Turbulence Modelling -- Gas Phase -- Particle Phase in Lagrangian Reference Frame -- Particle Phase in Eulerian Reference Frame -- 4.2.4 Particle-Wall Collision Model -- Lagrangian Reference Frame -- Eulerian Reference Frame -- 4.3 MULTIPHASE MODELS FOR LIQUID-PARTICLE FLOWS -- 4.3.1 Mixture Model
- 8.2.3 Other Boundary Conditions
- 3 - Solution Methods for Multiphase Flows -- 3.1 INTRODUCTION -- MESH SYSTEMS -- 3.2 CONSIDERATION FOR A RANGE OF MULTIPHASE FLOW PROBLEMS -- 3.2.1 Application of Structured Mesh -- 3.2.2 Application of Body-Fitted Mesh -- 3.2.3 Application of Unstructured Mesh -- 3.2.4 Some Comments on Grid Generation -- EULERIAN-EULERIAN FRAMEWORK -- 3.3 NUMERICAL ALGORITHMS -- 3.3.1 Basic Aspects of Discretisation - Finite Difference Method -- 3.3.2 Basic Aspects of Discretisation - Finite Volume Method -- 3.3.3 Basic Approximation of the Diffusion Term Based Upon the Finite Volume Method -- 3.3.4 Basic Approximation of the Advection Term Based Upon the Finite Volume Method -- 3.3.5 Some Comments on the Need for TVD Schemes -- 3.3.6 Explicit and Implicit Approaches -- 3.3.7 Assembly of Discretised Equations -- 3.3.8 Comments on the Linearisation of Source Terms -- 3.4 SOLUTION ALGORITHMS -- 3.4.1 The Philosophy Behind the Pressure Correction Techniques for Multiphase Problems -- 3.4.1.1 SIMPLE Algorithm for Mixture or Homogeneous Flows -- 3.4.1.2 A Comment on Other Pressure Correction Methods -- 3.4.1.3 Evaluation of the Face Velocity in Different Mesh Systems -- 3.4.1.4 Iterative Procedure Based on the SIMPLE Algorithm -- 3.4.1.5 Inter-Phase Slip Algorithm (IPSA) for Multiphase Flows -- 3.4.1.6 Inter-phase Slip Algorithm-Coupled (IPSA-C) for Multiphase Flows -- 3.4.1.7 Comments on the Need for Improved Interpolation Methods of Evaluating the Face Velocity in Multiphase Problems -- 3.4.2 Matrix Solvers for the Segregated Approach in Different Mesh Systems -- 3.4.3 Coupled Equation System -- EULERIAN-LAGRANGIAN FRAMEWORK -- 3.5 NUMERICAL AND SOLUTION ALGORITHMS -- 3.5.1 Fluid-Particle Interaction (Forces Related to Fluid Acting on Particle - One-Way, Two-Way Coupling)
- 4.3.1.1 Modelling Source or Sink Terms for Flow in Sedimentation Tank -- BUOYANCY DUE TO DENSITY DIFFERENCE -- SETTLING VELOCITY OF PARTICLE PHASE -- FLOCCULATION MODELLING -- RHEOLOGY OF THE MIXTURE -- 4.3.1.2 Modelling Source or Sink Terms for Flow in Slurry Transportation -- 4.3.2 Turbulence Modelling -- 4.4 WORKED EXAMPLES -- 4.4.1 Dilute Gas-Particle Flow over a Two-Dimensional Backward Facing Step -- 4.4.2 Dilute Gas-Particle Flow in a Three-Dimensional 90° Bend -- 4.4.3 Dilute Gas-Particle Flow over an Inline Tube Bank -- 4.4.4 Liquid-Particle Flows in Sedimentation Tank -- 4.4.5 Sand-Water Slurry Flow in a Horizontal Straight Pipe -- 4.5 SUMMARY -- 5 - Gas-Liquid Flows -- 5.1 INTRODUCTION -- 5.1.1 Background -- 5.1.2 Categorisation of Different Flow Regimes -- 5.1.3 Some Physical Characteristics of Boiling Flow -- 5.2 MULTIPHASE MODELS FOR GAS-LIQUID FLOWS -- 5.2.1 Multif luid Model -- 5.2.1.1 Inter-Phase Mass Transfer -- 5.2.1.2 Inter-Phase Momentum Transfer -- 5.2.1.3 Interphase Heat Transfer -- 5.2.2 Turbulence Modelling -- 5.3 POPULATION BALANCE APPROACH -- 5.3.1 Need for Population Balance in Gas-Liquid Flows -- 5.3.2 Population Balance Equation (PBE) -- 5.3.3 Method of Moments (MOM) -- 5.3.3.1 Quadrature Method of Moments (QMOM) -- 5.3.3.2 Direct Quadrature Method of Moments (DQMOM) -- 5.3.4 Class Methods (CM) -- 5.3.4.1 Average Quantities Approach -- 5.3.4.2 Multiple Size Group Model -- 5.4 BUBBLE INTERACTION MECHANISMS -- 5.4.1 Single Average Scalar Approach for Bubbly Flows -- 5.4.1.1 Wu et al. (1998) Model -- 5.4.1.2 Hibiki and Ishii (2002) Model -- 5.4.1.3 Yao and Morel (2004) Model -- 5.4.2 Multiple Bubble Size Approach for Bubbly Flows -- 5.4.2.1 DQMOM Model -- 5.4.2.2 MUSIG Model -- 5.4.3 Comments of Other Coalescence and Break-Up Kernels -- 5.4.4 Modeling Beyond Bubbly Flows-A Phenomenological Consideration
- 5.5 MODELING SUBCOOLED BOILING FLOWS -- 5.5.1 Review of Current Model Applications -- 5.5.2 Phenomenological Description -- 5.5.3 Nucleation of Bubbles at Heated Walls -- 5.5.4 Condensation of Bubbles in Subcooled Liquid -- 5.6 WORKED EXAMPLES -- 5.6.1 Dispersed Bubbly Flow in a Rectangular Column -- 5.6.2 Bubbly Flow in a Vertical Pipe -- 5.6.2.1 Experimental Data of Liu and Bankoff (1993a,b) -- 5.6.2.2 Experimental Data of Hibiki et al. (2001) -- 5.6.3 Subcooled Boiling Flow in a Vertical Annulus -- 5.6.3.1 Application of MUSIG Boiling Model -- 5.6.3.2 Application of Improved Wall Heat Partition Model -- 5.7 SUMMARY -- 6 - Free Surface Flows -- 6.1 INTRODUCTION -- 6.2 MULTIPHASE MODELS FOR FREE SURFACE FLOWS -- 6.3 RELEVANT WORKED EXAMPLES -- 6.3.1 Bubble Rising in a Viscous Liquid -- 6.3.2 Single Taylor Bubble -- 6.3.3 Collapse of a Liquid Column (Breaking Dam Problem) -- 6.3.4 Sloshing of Liquid -- 6.3.5 Slug Bubbles in Microchannel Flow -- 6.4 SUMMARY -- 7 - Granular Flows -- 7.1 INTRODUCTION -- 7.2 MULTIPHASE MODELS FOR GRANULAR FLOWS -- 7.3 PARTICLE-PARTICLE INTERACTION WITHOUT ADHESION -- 7.3.1 Normal Force Due to Continuous Potential -- 7.3.2 Normal Force Due to Linear Viscoelastic -- 7.3.3 Normal Force Due to Nonlinear Viscoelastic -- 7.3.4 Normal Force Due to Hysteretic -- 7.3.5 Tangential Force -- 7.3.6 Sliding, Twisting and Rolling Resistance -- 7.4 PARTICLE-PARTICLE INTERACTION WITH ADHESION -- 7.4.1 DVLO, JKR and DMT Theories -- 7.4.2 Liquid Bridging -- 7.4.3 Interfacial Attractive -- 7.4.4 Other Types of Field-Particle Interaction -- 7.5 WORKED EXAMPLES -- 7.5.1 Abrasive Jet Particles -- 7.5.2 Magnetic Nanoparticles in Fluids -- 7.5.3 Fluidised Bed -- 7.6 SUMMARY -- 8 - Freezing/Solidification -- 8.1 INTRODUCTION -- 8.2 MATHEMATICAL FORMULATION -- 8.2.1 Governing Equations -- 8.2.2 Solid-Liquid Interface