Bio-inspired polymers

Many key aspects of life are based on naturally occurring polymers, such as polysaccharides, proteins and DNA. Unsurprisingly, their molecular functionalities, macromolecular structures and material properties are providing inspiration for designing new polymeric materials with specific functions, f...

Full description

Saved in:
Bibliographic Details
Main Authors Bruns, Nico, Kilbinger, Andreas F. M
Format eBook
LanguageEnglish
Published La Vergne NBN International 2017
Royal Society of Chemistry (RSC)
Royal Society of Chemistry, The
Royal Society of Chemistry
Edition1
SeriesRSC polymer chemistry series
Subjects
Online AccessGet full text
ISBN1782626662
9781782624134
1782624139
9781782626664

Cover

Abstract Many key aspects of life are based on naturally occurring polymers, such as polysaccharides, proteins and DNA. Unsurprisingly, their molecular functionalities, macromolecular structures and material properties are providing inspiration for designing new polymeric materials with specific functions, for example, responsive, adaptive and self-healing materials. This book covers all aspects of the subject, ranging from the synthesis of novel polymers, to structure-property relationships, materials with advanced properties and applications of bio-inspired polymers in such diverse fields as drug delivery, tissue engineering, optical materials and lightweight structural materials. Written and edited by leading experts on the topic, the book provides a comprehensive review and essential graduate level text on bio-inspired polymers for biochemists, materials scientists and chemists working in both industry and academia.
AbstractList Many key aspects of life are based on naturally occurring polymers, such as polysaccharides, proteins and DNA. Unsurprisingly, their molecular functionalities, macromolecular structures and material properties are providing inspiration for designing new polymeric materials with specific functions, for example, responsive, adaptive and self-healing materials. This book covers all aspects of the subject, ranging from the synthesis of novel polymers, to structure-property relationships, materials with advanced properties and applications of bio-inspired polymers in such diverse fields as drug delivery, tissue engineering, optical materials and lightweight structural materials. Written and edited by leading experts on the topic, the book provides a comprehensive review and essential graduate level text on bio-inspired polymers for biochemists, materials scientists and chemists working in both industry and academia.
This book will provide a comprehensive review of the large field of bio-inspired polymers and is written and edited by leading experts in the field.
Many key aspects of life are based on naturally occurring polymers, such as polysaccharides, proteins and DNA. Unsurprisingly, their molecular functionalities, macromolecular structures and material properties are providing inspiration for designing new polymeric materials with specific functions, for example, responsive, adaptive and self-healing materials. Bio-inspired Polymers covers all aspects of the subject, ranging from the synthesis of novel polymers, to structure-property relationships, materials with advanced properties and applications of bio-inspired polymers in such diverse fields as drug delivery, tissue engineering, optical materials and lightweight structural materials. Written and edited by leading experts on the topic, the book provides a comprehensive review and essential graduate level text on bio-inspired polymers for biochemists, materials scientists and chemists working in both industry and academia.
Author Bruns, Nico
Kilbinger, Andreas F. M
Author_xml – sequence: 1
  fullname: Bruns, Nico
– sequence: 2
  fullname: Kilbinger, Andreas F. M
BookMark eNo90DtPwzAQAGAjHqItHdlZEDBEinN-jiQqUKkqDIg1shO3tZLGIU6L-u9xCep0utOne43RReMac4bGmCaAE4Y5PQ8JFwlLGGPJFRpJhnEoAL9GU--tjhNOOZUcRug2tS6yjW9tZ8q71tWHren8Dbpcqdqb6X-coK-X2Wf2Fi3eX-fZ8yJSYRjtI0FwQTAloBiVBackjnGpKSmFiLUwWpWgJIBhJMwUIAumVyASTKEgikEBE_Q0NFa-Mj9-4-re5_vaaOcqn0suTneQYB8G23bue2d8n_-xwjR9p-p8lmaEA8j4KO8HWTVub-q87exWdYf8yPOqTecfcVgUB_c4OLtud7q2fmOb9Ukv0-U8DZDE4VO_Ej1kcQ
ContentType eBook
Copyright 2017
Copyright_xml – notice: 2017
DBID NJQBB
DEWEY 572.33
DatabaseName NBN International
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISBN 1523126175
9781523126170
9781782626664
1782626662
Edition 1
ExternalDocumentID 9781782626664
EBC4733904
book_kpBIP00011
NBNIB0004097
GroupedDBID 20A
38.
AABBV
ABMRC
ABZOM
AKOEP
ALMA_UNASSIGNED_HOLDINGS
ALUEM
AZZ
BBABE
CMZ
CZZ
EBSCA
J-X
KU8
NJQBB
PYZUL
RBFBN
TD3
QOC
ID FETCH-LOGICAL-a1525t-841c41543a659c754001db54d880b8ebad3a933e64b02839c6bf382153c4a63c3
IEDL.DBID CMZ
ISBN 1782626662
9781782624134
1782624139
9781782626664
IngestDate Mon Mar 31 13:59:50 EDT 2025
Wed Jun 04 00:34:40 EDT 2025
Sat Nov 23 13:55:56 EST 2024
Thu Sep 11 08:27:58 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCallNum_Ident QP801.B69B56 2017
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a1525t-841c41543a659c754001db54d880b8ebad3a933e64b02839c6bf382153c4a63c3
OCLC 961117837
PQID EBC4733904
PageCount 613
ParticipantIDs askewsholts_vlebooks_9781782626664
proquest_ebookcentral_EBC4733904
knovel_primary_book_kpBIP00011
igpublishing_primary_NBNIB0004097
ProviderPackageCode J-X
PublicationCentury 2000
PublicationDate 2017.
2017
2016
2016-10-14
PublicationDateYYYYMMDD 2017-01-01
2016-01-01
2016-10-14
PublicationDate_xml – year: 2017
  text: 2017.
PublicationDecade 2010
PublicationPlace La Vergne
PublicationPlace_xml – name: La Vergne
PublicationSeriesTitle RSC polymer chemistry series
PublicationYear 2017
2016
Publisher NBN International
Royal Society of Chemistry (RSC)
Royal Society of Chemistry, The
Royal Society of Chemistry
Publisher_xml – name: NBN International
– name: Royal Society of Chemistry (RSC)
– name: Royal Society of Chemistry, The
– name: Royal Society of Chemistry
SSID ssib027575973
ssj0001806316
Score 2.012744
Snippet Many key aspects of life are based on naturally occurring polymers, such as polysaccharides, proteins and DNA. Unsurprisingly, their molecular functionalities,...
This book will provide a comprehensive review of the large field of bio-inspired polymers and is written and edited by leading experts in the field.
SourceID askewsholts
proquest
knovel
igpublishing
SourceType Aggregation Database
Publisher
SubjectTerms Biochemistry
Biopolymers
Biosynthesis
Materials & Their Applications
Plastics & Rubber
TableOfContents Bio-inspired polymers -- Preface -- Contents -- Chapter 1 Synthetic Aspects of Peptide- and Protein-Polymer Conjugates in the Post-click Era -- Chapter 2 Glycopolymers -- Chapter 3 Synthesis of Non-natural Polymers with Controlled Primary Structures -- Chapter 4 Single-chain Nanoparticles -- Chapter 5 Polymeric Tubular Structures -- Chapter 6 Bio-inspired Polymer Membranes -- Chapter 7 Polymeric Ionic Liquids with Micelle-like Topologies and Functions -- Chapter 8 Biological and Bio-inspired Heterogeneous Composites: From Resilient Palm Trees to Stretchable Electronics -- Chapter 9 Translating Mussel Adhesion: Four Uncertainties about the Interface -- Chapter 10 Mussel Adhesive-inspired Polymers -- Chapter 11 Self-reporting Polymeric Materials with Mechanochromic Properties -- Chapter 12 Mechanically Adaptive Nanocomposites Inspired by Sea Cucumbers -- Chapter 13 Bio-inspired Polymer Artificial Muscles -- Chapter 14 Materials for Tissue Engineering and 3D Cell Culture -- Chapter 15 Antimicrobial Polymers and Surfaces - Natural Mimics or Surpassing Nature? -- Chapter 16 Superwettability of Polymer Surfaces -- Chapter 17 Bio-mimetic Structural Colour using Biopolymers -- Subject Index.
Title Page Preface Table of Contents 1. Synthetic Aspects of Peptide- and Protein-Polymer Conjugates in the Post-Click Era 2. Glycopolymers 3. Synthesis of Non-Natural Polymers with Controlled Primary Structures 4. Single-Chain Nanoparticles 5. Polymeric Tubular Structures 6. Bio-Inspired Polymer Membranes 7. Polymeric Ionic Liquids with Micelle-Like Topologies and Functions 8. Biological and Bio-Inspired Heterogeneous Composites: From Resilient Palm Trees to Stretchable Electronics 9. Translating Mussel Adhesion: Four Uncertainties about the Interface 10. Mussel Adhesive-Inspired Polymers 11. Self-Reporting Polymeric Materials with Mechanochromic Properties 12. Mechanically Adaptive Nanocomposites Inspired by Sea Cucumbers 13. Bio-Inspired Polymer Artificial Muscles 14. Materials for Tissue Engineering and 3D Cell Culture 15. Antimicrobial Polymers and Surfaces - Natural Mimics or Surpassing Nature? 16. Superwettability of Polymer Surfaces 17. Bio-Mimetic Structural Colour Using Biopolymers Subject Index
Cover -- Contents -- Preface -- Chapter 1 Synthetic Aspects of Peptide- and Protein-Polymer Conjugates in the Post-click Era -- 1.1 Introduction -- 1.2 General Concepts for Bioconjugation -- 1.3 Chemical Synthesis of Peptide- and Protein-Polymer Conjugates -- 1.3.1 Coupling with Amines -- 1.3.2 Coupling with Thiols -- 1.3.3 Chemical Ligation by Oxime/Hydrazone Formation -- 1.3.4 Staudinger Ligation -- 1.3.5 Azide-Alkyne Cycloaddition -- 1.3.6 Diels-Alder (DA) Cycloaddition Reactions -- 1.3.7 Chemistry with 1,2,4-Triazoline-3,5-diones (TAD) -- 1.4 Chemoenzymatic Approaches -- 1.4.1 Transglutaminase (TGase) Catalyzed Ligation -- 1.4.2 Sortase (Srt)-mediated Ligation -- 1.4.3 Enzyme-induced Functional Group Modifications -- 1.5 Biotransformations -- 1.6 Conclusions and Future Perspectives -- References -- Chapter 2 Glycopolymers -- 2.1 Introduction -- 2.2 Synthesis of Glycopolymers -- 2.2.1 Synthesis of Glycopolymers via Glycomonomers -- 2.2.2 Synthesis of Glycopolymers via Post-polymerization Strategies -- 2.2.3 Synthesis of Glyco- and Block Copolymers -- 2.3 Analyzing Glycopolymers -- 2.3.1 Multivalent Binding of Glycopolymers -- 2.3.2 Binding Studies of Glycopolymers Targeting Lectins -- 2.4 Biomedical and Biotechnological Applications of Glycopolymers -- 2.5 Conclusions -- Acknowledgments -- References -- Chapter 3 Synthesis of Non-natural Polymers with Controlled Primary Structures -- 3.1 Introduction -- 3.2 Sequence-controlled Polymers Prepared by Chain-growth Polymerization -- 3.2.1 Anionic Polymerization -- 3.2.2 Cationic Polymerization -- 3.2.3 Controlled Radical Polymerization -- 3.2.4 Ring-opening Polymerization -- 3.2.5 Ring-opening Metathesis Polymerization -- 3.3 Sequence-controlled Polymers Prepared by Step-growth Polymerization -- 3.3.1 Acyclic Diene Metathesis Polymerization -- 3.3.2 Click Step-growth Polymerization
3.3.3 Other Step-growth Approaches -- 3.3.4 Multicomponent Reactions -- 3.4 Sequence-controlled Polymers Prepared by Multi-step-growth Polymerization -- 3.4.1 Conventional Iterative Synthesis -- 3.4.2 Protecting-group-free Iterative Synthesis -- 3.4.3 Successive Radical Insertion -- 3.4.4 Convergent and Divergent Strategies -- 3.5 Use of Templates and Catalytic Molecular Machines -- 3.5.1 Template-assisted Sequence-controlled Polymerization -- 3.5.2 Rotaxane-based Catalytic Machines -- 3.6 Outlook -- References -- Chapter 4 Single-chain Nanoparticles -- 4.1 Introduction -- 4.2 Synthesis of SCNPs -- 4.2.1 Covalent Cross-linking Reactions -- 4.2.2 Dynamic Covalent Chemistry -- 4.2.3 Non-covalent Chemistry -- 4.2.4 Multiple Intra-chain Interactions -- 4.2.5 Outlook -- 4.3 Characterization of SCNPs -- 4.3.1 Size Exclusion Chromatography -- 4.3.2 Light Scattering -- 4.3.3 Viscometry -- 4.3.4 NMR Spectroscopy -- 4.3.5 Characterizing the Morphology of SCNPs -- 4.4 Potential Applications -- 4.4.1 Catalysis -- 4.4.2 Nano-medicine -- 4.4.3 Chemical Sensors -- 4.4.4 Self-assembly -- 4.5 Summary and Outlook -- Acknowledgments -- References -- Chapter 5 Polymeric Tubular Structures -- 5.1 Introduction - Bio-inspiration -- 5.2 Tubes Based on Single Polymer Chains -- 5.2.1 Polyaramides -- 5.2.2 Phenylene Helices -- 5.2.3 Other Helical Polymers -- 5.2.4 Helical Polymers with Host-Guest Interactions -- 5.3 Engineered Polymer Nanotubes -- 5.3.1 Block Copolymer Self-assembly -- 5.3.2 DNA Origami -- 5.3.3 Metal-organic Nanotubes (MONTs) -- 5.3.4 Templated Synthesis of Polymeric Tubes -- 5.3.5 Other Methods to Form Polymeric Tubes -- 5.4 Summary -- Acknowledgments -- References -- Chapter 6 Bio-inspired Polymer Membranes -- 6.1 Introduction -- 6.2 Properties of Copolymers that Form Bio-inspired Membranes -- 6.3 Bio-inspired Polymersomes (3D Membranes)
6.3.1 Biomolecule Surface-functionalized Vesicles -- 6.3.2 Reconstitution of Membrane Proteins into Polymer Membranes -- 6.3.3 Bio-inspired Block Copolymer/Lipid Hybrid Vesicles -- 6.3.4 Protein-polymer Nanoreactors -- 6.4 Bio-inspired Planar Polymer Membranes (2D Membranes) -- 6.4.1 Monolayer at the Water-Air Interface and Free-standing Membranes -- 6.4.2 Solid Supported Membranes -- 6.4.3 Combination of 2D Membranes with Biomolecules -- 6.4.4 Hybrid Polymer-Lipid Membranes -- 6.5 Immobilized Vesicles -- 6.6 Applications of Bio-inspired Polymer Membranes -- 6.6.1 Polymersomes -- 6.6.2 Planar Membranes -- 6.7 Conclusions and Perspectives -- Abbreviations -- Acknowledgments -- References -- Chapter 7 Polymeric Ionic Liquids with Micelle-like Topologies and Functions -- 7.1 Introduction -- 7.2 From Supramolecular Assemblies to Micelle-like Macromolecules -- 7.3 Nanostructured and Micelle-like Polymeric Ionic Liquids -- 7.4 Compartmentalized Onion-like Polymeric Ionic Liquids -- 7.5 Conclusions -- Acknowledgments -- References -- Chapter 8 Biological and Bio-inspired Heterogeneous Composites: From Resilient Palm Trees to Stretchable Electronics -- 8.1 Introduction -- 8.2 The Natural Building Blocks of Plants -- 8.3 Palms as Role Models for Biological Heterogeneous Composites -- 8.3.1 Hierarchical Structure and Mechanics of Palms -- 8.3.2 Controlled Local Composition and Reinforcement Orientation -- 8.4 Bio-inspired Heterogeneous Composites -- 8.4.1 The Synthetic Building Blocks -- 8.4.2 Controlled Local Composition -- 8.4.3 Controlled Reinforcement Orientation -- 8.4.4 Functional Devices Based on Bio-inspired Heterogeneous Composites -- 8.5 Discussion -- 8.6 Remaining Challenges and Outlook -- Acknowledgments -- References -- Chapter 9 Translating Mussel Adhesion: Four Uncertainties about the Interface -- 9.1 Introduction
9.2 Are Interfacial Films Cleared Away? -- 9.3 Do Mussels Displace Surface Water? -- 9.4 Is the pH of Adhesive Deposition the Same as Seawater pH? -- 9.5 Is Interfacial Redox the Same as Seawater Redox? -- 9.6 Summary -- Acknowledgments -- References -- Chapter 10 Mussel Adhesive-inspired Polymers -- 10.1 Introduction -- 10.2 Catechol Side Chain Chemistry -- 10.2.1 Reversible Catechol Interactions -- 10.2.2 Oxidation-induced Covalent Crosslinking -- 10.2.3 Chemical Modification of Catechol -- 10.3 Preparation of Catechol Functionalized Polymers -- 10.3.1 Catechol Side Chain Protection -- 10.3.2 Direct Functionalization of Catechol -- 10.3.3 Polymerization of Catechol-modified Monomers -- 10.3.4 Catechol-functionalized Initiator -- 10.4 Application of Catechol Functionalized Polymers -- 10.4.1 Biomedical Adhesives -- 10.4.2 Drug Delivery -- 10.4.3 Coatings for Reducing Biofouling -- 10.4.4 Delivery of Therapeutic Cells -- 10.4.5 Hydrogel Actuators -- 10.4.6 Smart Adhesives -- 10.5 Future Outlook -- 10.6 Summary -- Acknowledgments -- References -- Chapter 11 Self-reporting Polymeric Materials with Mechanochromic Properties -- 11.1 Introduction -- 11.2 Learning from Nature -- 11.3 Mechano-responsiveness -- 11.3.1 Mechanical Input and Methods to Measure Mechanically-induced Changes in Polymers -- 11.3.2 Mechano-responsiveness at the Molecular Level -- 11.3.3 Mechano-responsiveness at the Supramolecular Level -- 11.3.4 Mechanobiochemistry -- 11.3.5 Mechano-responsiveness at the Microscopic Level -- 11.4 Conclusions and Future Perspectives -- Acknowledgments -- References -- Chapter 12 Mechanically Adaptive Nanocomposites Inspired by Sea Cucumbers -- 12.1 Introduction -- 12.2 Mechanical Morphing of the Sea Cucumber Dermis -- 12.3 Water-responsive Sea Cucumber-mimicking Nanocomposites -- 12.3.1 Stress Transfer in Mechanically Adaptive Materials
12.4 Mechanically Adaptive Sea Cucumber Mimics with Specific Responsiveness -- 12.4.1 pH-responsive Composites -- 12.4.2 Light-responsive Composites -- 12.5 Application of Mechanically Adaptive Nanocomposites in Cortical Implants -- 12.6 Mechanically Adaptive Nanocomposites with Other Functions -- 12.6.1 Healable Materials -- 12.6.2 Shape Memory -- 12.6.3 Actuators -- 12.7 Related Examples of Mechanically Adaptive Materials -- 12.8 Summary and Outlook -- Acknowledgments -- References -- Chapter 13 Bio-inspired Polymer Artificial Muscles -- 13.1 Introduction -- 13.2 Natural Muscle -- 13.3 Types of Polymer Artificial Muscles -- 13.3.1 Polymer Coil Muscles -- 13.3.2 Dielectric Elastomer Actuators (DEAs) -- 13.3.3 Bending Type Polymer Artificial Muscles -- 13.4 Bio-inspired Applications for Polymer Artificial Muscles -- 13.5 Conclusions -- References -- Chapter 14 Materials for Tissue Engineering and 3D Cell Culture -- 14.1 Introduction -- 14.2 Electrospinning -- 14.3 Thermally Induced Phase Separation -- 14.4 Emulsion Templated Porous Polymers (PolyHIPEs) -- 14.5 Breath Figure Method -- 14.6 Conclusions -- Acknowledgments -- References -- Chapter 15 Antimicrobial Polymers and Surfaces - Natural Mimics or Surpassing Nature? -- 15.1 Introduction -- 15.2 Classification of Antimicrobial Polymers -- 15.2.1 Considerations on the Comparability of Biological Testing of Antimicrobial Polymers -- 15.2.2 Biocide-releasing Polymers -- 15.2.3 Polymeric Biocides -- 15.2.4 Biocidal Polymers -- 15.3 Antimicrobial Surfaces -- 15.4 Anti-fouling Polymers -- 15.5 Conclusions -- Acknowledgments -- References -- Chapter 16 Superwettability of Polymer Surfaces -- 16.1 Introduction -- 16.2 Self-cleaning Polymer Surfaces -- 16.2.1 Polymer Surfaces in Air -- 16.2.2 Polymer Surfaces under Water -- 16.3 Special Adhesion -- 16.3.1 Cell-adhesion -- 16.3.2 Liquid-adhesion
16.3.3 Air-adhesion
Title Bio-inspired polymers
URI http://portal.igpublish.com/iglibrary/search/NBNIB0004097.html
https://app.knovel.com/hotlink/toc/id:kpBIP00011/bio-inspired-polymers/bio-inspired-polymers?kpromoter=Summon
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=4733904
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781782626664&uid=none
Volume v.Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV1NS_QwEB5EL3pR0RfXL1bxGrc1adp6EbooruDiQUW8lCRNX5eubXGroD_C3-xM213l9QVvnkpb0o9JeJ4nM5kJwEGobeJwo5lOLGcUOGNKKY8h16IYOQrc1KXk5MuhPL8RF3fe3Rw8TnNhaHOrLC9e7LiG6YeiokBmrypMb5QcZ2U0uKplTE-PCjbKKRptE1YW41dy8_7_6klW1kvbcGg0riVCbMenqVr_8v7TIxMgXbuSsr-QNiUFnMK2KNT0XCzBkppkCD8ITdWEypv-LWfuIiSx5tO_4XpNVmfL8D79zWaNSnb4XOlD8_ZPBchfs8MKLFhKqViFOZuvwXqErQZtq-5V22odbs9Or_vnrN2cgSnaMqligXANsr_gSnqh8VH5OW6iPZEgIujAapVwFXJupdCkYUIjdcoDVBjcCCW54X9gPi9yuwHdIPWs9K1FYHZFqlJlvFQaxwYylBaPHdj_YvX4ZVwHkifxrGtwDiY6sPe1M-KyqdYRD6PhICLp6oR-B3Ybo87u0oPiT3N2oDvtubh-SbtENj6N-sLnPHTE5k_P2ILFI-L-2k-zDfPV07PdQeVS6d16wH0AIzHz5w
linkProvider Knovel
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Bio-Inspired+Polymers&rft.au=Kilbinger+Andreas+F.+M&rft.au=Bruns+Nico&rft.date=2017-01-01&rft.pub=Royal+Society+of+Chemistry+%28RSC%29&rft.isbn=9781782624134&rft.externalDocID=book_kpBIP00011
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97817826%2F9781782626664.jpg
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fportal.igpublish.com%2Figlibrary%2Famazonbuffer%2FNBNIB0004097_null_0_320.png
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcontent.knovel.com%2Fcontent%2FThumbs%2Fthumb11967.gif