New Trends in Computational Electromagnetics

Computational electromagnetics is an active research area concerned with the development and implementation of numerical methods and techniques for rigorous solutions to physical problems across the entire spectrum of electromagnetic waves - from radio frequencies to gamma rays. Numerical methods an...

Full description

Saved in:
Bibliographic Details
Main Author Ozgur Ergul, Ergul
Format eBook Book
LanguageEnglish
Published Stevenage The Institution of Engineering and Technology 2020
Institution of Engineering and Technology (The IET)
SciTech Publishing
Institution of Engineering & Technology
Edition1
SeriesElectromagnetics and Radar
Subjects
Online AccessGet full text
ISBN9781785615481
1785615483
DOI10.1049/SBEW533E

Cover

Table of Contents:
  • Chapter 1: Introduction -- Chapter 2: New trends in computational electromagnetics -- Chapter 3: New trends in frequency-domain surface integral equations -- Chapter 4: New trends in frequency-domain volume integral equations -- Chapter 5: New trends in time-domain integral equations -- Chapter 6: New trends in time-domain methods for plasmonic media -- Chapter 7: New trends in finite element methods -- Chapter 8: New trends in geometric modeling and discretization for integral equations -- Chapter 9: New trends in hierarchical vector basis functions -- Chapter 10: New trends in analysis of electromagnetic fields in multilayered media -- Chapter 11: New trends in acceleration and parallelization techniques -- Chapter 12: New trends in periodic problems and determining related eigenvalues -- Chapter 13: New trends in algebraic preconditioning -- Chapter 14: New trends in high-frequency techniques and hybridizations -- Chapter 15: New trends in uncertainty quantification for large-scale electromagnetic analysis: from tensor product cubature rules to spectral quantic tensor-train approximation
  • Title Page List of Abbreviations Mathematical Notations and Symbols Table of Contents 1. Introduction 2. New Trends in Computational Electromagnetics 3. New Trends in Frequency-Domain Surface Integral Equations 4. New Trends in Frequency-Domain Volume Integral Equations 5. New Trends in Time-Domain Integral Equations 6. New Trends in Time-Domain Methods for Plasmonic Media 7. New Trends in Finite Element Methods 8. New Trends in Geometric Modeling and Discretization for Integral Equations 9. New Trends in Hierarchical Vector Basis Functions 10. New Trends in Analysis of Electromagnetic Fields in Multilayered Media 11. New Trends in Acceleration and Parallelization Techniques 12. New Trends in Periodic Problems and Determining Related Eigenvalues 13. New Trends in Algebraic Preconditioning 14. New Trends in High-Frequency Techniques and Hybridizations 15. New Trends in Uncertainty Quantification for Large-Scale Electromagnetic Analysis: From Tensor Product Cubature Rules to Spectral Quantic Tensor-Train Approximation Index
  • 9. New trends in hierarchical vector basis functions / Roberto D. Graglia and Andrew F. Peterson
  • Intro -- Contents -- About the editor -- Foreword -- List of abbreviations -- Mathematical notations and symbols -- 1. Introduction / Özgür Ergül -- 1.1 Nobody reads introduction! -- 1.2 What this book is about? -- 1.3 Chapters -- 1.4 References -- 1.5 Mathematical notations and symbols -- 1.6 Final hint -- 2. New trends in computational electromagnetics / Weng Cho Chew, Qi I. Dai, Qin S. Liu, Tian Xia, Thomas E. Roth, Hui Gan, Aiyin Liu, Shu C. Chen, Mert Hidayetoglu, Li Jun Jiang, Sheng Sun, and Wen-mei Hwu -- 2.1 Importance of electromagnetics and computational electromagnetics -- 2.1.1 Knowledge grows like a tree -- 2.1.2 A brief history of electromagnetics -- 2.2 Model-order-reduction-enhanced EPA -- 2.2.1 Equivalence principle algorithm -- 2.2.2 Bottleneck of EPA and MOR-enhanced solution -- 2.2.3 Numerical examples -- 2.3 Potential-based integral equation -- 2.3.1 Formulation -- 2.3.2 Hertzian-dipole and plane-wave incident potentials -- 2.3.3 Local source excitation -- 2.3.4 Numerical examples -- 2.3.5 Conclusions on the potential-based integral equation -- 2.4 Augmented electrical-field integral equation -- 2.5 Broadband MLFMA -- 2.6 Potential-based time-domain integral equations -- 2.6.1 Derivation -- 2.6.2 Numerical results -- 2.7 NGFs in SIEs -- 2.7.1 SIEs with NGF for anisotropic media -- 2.7.2 A-EFIE for inhomogeneous media -- 2.7.3 Spectral NGF -- 2.8 Advanced schemes and evaluation of characteristic modes -- 2.8.1 EFIE-based scheme of characteristic modes -- 2.8.2 CFIE-based scheme of characteristic modes -- 2.8.3 Low-frequency-stabilized scheme of characteristic modes -- 2.8.4 Characteristic modes for objects with inhomogeneous background -- 2.8.5 Numerical examples -- 2.9 Quantum Maxwell's equations -- 2.9.1 Atom-field dressed states -- 2.10 Maxwell's equations with DEC -- 2.10.1 Discrete Curl and Stokes' theorem with DEC
  • 7.6 Three-dimensional and two-dimensional FEM modeling of multiport waveguide structures -- 7.7 FEM modeling of material inhomogeneity and anisotropy -- 7.8 Anisotropic locally conformal PML -- 7.9 Time-domain FEM techniques -- 7.10 Numerical examples and discussion of higher order FEM modeling -- 7.11 FETI-DP algorithm and its parallelization for large problems -- 7.11.1 Numerical examples of parallel FETI-DP computation -- 7.12 Time-domain FEM modeling of nonlinear problems -- 7.12.1 TDFEM modeling and simulation of nonlinear ferromagnetic materials -- 7.12.2 TDFEM analysis of nonlinear conductive materials -- 7.12.3 Results of TDFEM simulations of nonlinear problems -- 7.13 DGTD method for EM and multiphysics -- 7.13.1 DGTD modeling of EM fields and EM-plasma interactions -- 7.13.2 Dynamic adaptation and multirate time integration techniques -- 7.13.3 Examples of DGTD solutions to EM and EM-plasma problems -- 7.14 Conclusions -- References -- 8. New trends in geometric modeling and discretization for integral equations / Jie Li, Daniel L. Dault and Balasubramaniam Shanker -- 8.1 Introduction -- 8.2 Problem statement -- 8.3 Generalized method of moments -- 8.3.1 Overview -- 8.3.2 Formulation -- 8.3.3 Evaluation of integrals -- 8.3.4 Results -- 8.4 Subdivision surfaces for GMM -- 8.4.1 Loop subdivision surfaces -- 8.4.2 Evaluation of the limit surface and derivatives -- 8.4.3 GMM patches and local parameterizations -- 8.4.4 Merging of regular patches -- 8.4.5 Basis functions -- 8.4.6 Partition of unity -- 8.4.7 Results -- 8.4.8 Discussion -- 8.5 Iso-geometric analysis via subdivision surfaces -- 8.5.1 Current representation and field solvers -- 8.5.2 Low-frequency-stable EFIE -- 8.5.3 Calderón preconditioner -- 8.5.4 Results -- 8.6 Conclusion and summary -- References
  • 3.5 Calderón preconditioning techniques -- 3.5.1 Perfect electric conductors -- 3.5.2 Impedance surfaces -- 3.5.3 Penetrable bodies-PMIE-based formulations -- 3.5.4 Penetrable bodies-other formulations -- 3.5.5 Other stabilization and preconditioning techniques -- 3.6 Unconventional boundary conditions and complex materials -- 3.6.1 Surface impedance resonances -- 3.6.2 Normal component boundary conditions -- 3.6.3 Mixed impedance boundary condition -- 3.6.4 Perfect electromagnetic conductor -- 3.6.5 Mixed normal-tangential boundary conditions -- 3.6.6 More general and complex materials -- 3.7 Spurious-free theory of characteristic modes formulations -- 3.7.1 Perfect electric conductors -- 3.7.2 Impedance surfaces-EFIE formulation -- 3.7.3 Impedance surfaces-ECIE and CFIE formulations -- 3.7.4 Penetrable bodies-J formulation -- 3.7.5 Penetrable bodies-M formulation and CFIE formulation -- 3.7.6 Penetrable bodies-other formulations -- 3.8 Conclusions -- References -- 4. New trends in frequency-domain volume integral equations / Johannes Markkanen and Pasi Ylä-Oijala -- 4.1 Introduction -- 4.2 Theoretical background -- 4.2.1 Volume equivalence principle -- 4.2.2 VIE formulations for dielectric materials -- 4.2.3 VIE formulations for general anisotropic materials -- 4.2.4 JM-VIE formulation for bianisotropic materials -- 4.2.5 Coupled volume-surface integral equations -- 4.2.6 Mapping properties of formulations -- 4.2.7 Spectral analysis -- 4.3 Conforming discretization techniques -- 4.3.1 Method of moments -- 4.3.2 Basis and test function finite-element spaces -- 4.3.3 Alternative discretization strategies -- 4.3.4 Numerical comparisons -- 4.4 Acceleration techniques -- 4.4.1 Preconditioning -- 4.5 Application examples -- 4.5.1 Fluctuation-driven physics -- 4.5.2 Bioelectromagnetics -- 4.5.3 T-matrix calculation via VIE
  • 4.5.4 Light scattering by discrete random media -- 4.6 Conclusions -- References -- 5. New trends in time-domain integral equations / Daniel S.Weile, Jielin Li, David A. Hopkins, and Christopher Kerwein -- 5.1 Introduction -- 5.1.1 A short history of TDIEs in electromagnetics -- 5.1.2 Time-domain integral equations and their discretization -- 5.2 Methods for the discretization of TDIEs -- 5.2.1 Exact integration -- 5.2.2 Band-limited interpolation and extrapolation -- 5.2.3 Laguerre basis -- 5.2.4 Series expansion -- 5.2.5 Convolution quadrature -- 5.3 Fast methods -- 5.3.1 Adaptive integral method -- 5.3.2 Plane-wave time-domain method -- 5.4 New trends in the solution of TDIEs -- 5.4.1 Multiphysics -- 5.4.2 Electromagnetic compatibility/interference -- 5.4.3 Stability enhancement -- 5.5 Conclusions -- References -- 6. New trends in time-domain methods for plasmonic media / Sadeed B. Sayed, Ismail E. Uysal, Hüseyin Arda Ülkü and Hakan Bagci -- 6.1 Introduction -- 6.2 Formulation -- 6.2.1 Problem description -- 6.2.2 TD-SIE solver -- 6.2.3 TD-VIE solver -- 6.2.4 MOT solution -- 6.3 Numerical results -- 6.3.1 Sphere -- 6.3.2 Rounded cube -- 6.3.3 Rounded prism -- 6.3.4 Dimer -- 6.4 Conclusions -- References -- 7. New trends in finite element methods / Branislav M. Notaroš and Su Yan -- 7.1 Introduction -- 7.2 General FEM methodology and basic steps -- 7.3 Geometrical elements for FEM modeling -- 7.3.1 Generalized hexahedral finite elements -- 7.3.2 Generalized curved parametric FEM tetrahedra -- 7.4 Field approximation basis functions on finite elements -- 7.4.1 Higher order hierarchical curl-conforming basis functions for hexahedral modeling -- 7.4.2 Higher order interpolatory curl-conforming bases on generalized tetrahedra -- 7.5 FEM mesh termination techniques for open-region problems
  • 2.10.2 Discrete Green's function -- 2.10.3 Computational electromagnetics with DEC -- 2.11 Fast and massively parallel inverse multiple scattering -- 2.11.1 Full-wave formulation -- 2.11.2 Computational bottlenecks -- 2.11.3 Implementation overview -- 2.11.4 GPU optimizations and heterogeneous computing -- 2.11.5 Scaling on supercomputers -- 2.12 Summary -- Acknowledgments -- References -- 3. New trends in frequency-domain surface integral equations / Pasi Ylä-Oijala and Seppo Järvenpää -- 3.1 Introduction -- 3.2 Background, well-established concepts, and challenges -- 3.2.1 Integral equations for perfect conductors -- 3.2.2 Integral equations for impedance surfaces -- 3.2.3 Integral equations for penetrable bodies -- 3.2.4 Correct (div-conforming) discretization of PEC-EFIE -- 3.2.5 Incorrect discretization of PEC-ECIE (MFIE) -- 3.2.6 Discretization of integral equations for impedance surfaces -- 3.2.7 Discretization of integral equations for penetrable bodies -- 3.2.8 Low-frequency and dense-discretization issues -- 3.2.9 Theory of characteristic modes -- 3.3 Mixed and other novel discretization strategies -- 3.3.1 Div-conforming discretization of PEC-ECIE (MFIE) -- 3.3.2 Div-conforming discretization of CFIE -- 3.3.3 Discretization of IBC integral equations -- 3.3.4 Mixed-discretization of current-based integral equations for penetrable bodies -- 3.3.5 Discretization strategy based on Hdiv inner product -- 3.3.6 Discretization of source integral equations -- 3.3.7 Other discretization strategies -- 3.4 Novel integral-equation formulations -- 3.4.1 Current and charge integral equations -- 3.4.2 Potential and charge integral equations -- 3.4.3 Debye-source integral equations -- 3.4.4 Generalized Debye-source representation -- 3.4.5 Vector-scalar potential integral equations -- 3.4.6 Field-only integral equations