Computer Vision for X-Ray Testing Imaging, Systems, Image Databases, and Algorithms

This accessible textbook presents an introduction to computer vision algorithms for industrially-relevant applications of X-ray testing. Covering complex topics in an easy-to-understand way, without requiring any prior knowledge in the field, the book provides a concise review of the key methodologi...

Full description

Saved in:
Bibliographic Details
Main Authors Mery, Domingo, Pieringer, Christian
Format eBook
LanguageEnglish
Published Cham Springer International Publishing AG 2020
Springer International Publishing
Edition2
Subjects
Online AccessGet full text
ISBN9783030567682
3030567680
DOI10.1007/978-3-030-56769-9

Cover

Table of Contents:
  • Intro -- Foreword to the Second Edition -- Foreword to the First Edition -- Preface to the Second Edition -- Preface to the First Edition -- Acknowledgements -- Contents -- About the Authors -- 1 X-ray Testing -- 1.1 Introduction -- 1.2 History -- 1.3 Physics of the X-rays -- 1.3.1 Formation of X-rays -- 1.3.2 Scattering and Absorption of X-rays -- 1.4 X-ray Testing System -- 1.4.1 X-ray Source -- 1.4.2 Manipulator -- 1.4.3 Image Intensifier -- 1.4.4 CCD-Camera -- 1.4.5 Flat Panel -- 1.4.6 Computer -- 1.5 X-ray Imaging -- 1.5.1 X-ray Image Formation -- 1.5.2 Image Acquisition -- 1.5.3 X-ray Image Visualization -- 1.5.4 Dual-Energy -- 1.6 Computer Vision -- 1.6.1 Geometric Model -- 1.6.2 Single View Analysis -- 1.6.3 Multiple View Analysis -- 1.6.4 Deep Learning -- 1.6.5 Computed Tomography -- 1.7 Code and Data -- 1.7.1 Pyxvis Library -- 1.7.2 mathbbGDXray+ Database -- 1.8 General Methodology for X-ray Testing -- 1.9 Summary -- References -- 2 Images for X-ray Testing -- 2.1 Introduction -- 2.2 Structure of the Database -- 2.3 Castings -- 2.4 Welds -- 2.5 Baggage -- 2.6 Natural Objects -- 2.7 Settings -- 2.8 Python Commands -- 2.9 Summary -- References -- 3 Geometry in X-ray Testing -- 3.1 Introduction -- 3.2 Geometric Transformations -- 3.2.1 Homogeneous Coordinates -- 3.2.2 2D rightarrow 2D Transformation -- 3.2.3 3D rightarrow 3D Transformation -- 3.2.4 3D rightarrow 2D Transformation -- 3.3 Geometric Model of an X-ray Computer Vision System -- 3.3.1 A General Model -- 3.3.2 Geometric Models of the Computer Vision System -- 3.3.3 Explicit Geometric Model Using an Image Intensifier -- 3.3.4 Multiple View Model -- 3.4 Calibration -- 3.4.1 Calibration Using Python -- 3.4.2 Experiments of Calibration -- 3.5 Geometric Correspondence in Multiple Views -- 3.5.1 Correspondence Between Two Views -- 3.5.2 Correspondence Between Three Views
  • References -- 6 Classification in X-Ray Testing -- 6.1 Introduction -- 6.2 Classifiers -- 6.2.1 Minimal Distance -- 6.2.2 Mahalanobis Distance -- 6.2.3 Bayes -- 6.2.4 Linear Discriminant Analysis -- 6.2.5 Quadratic Discriminant Analysis -- 6.2.6 K-Nearest Neighbors -- 6.2.7 Neural Networks -- 6.2.8 Support Vector Machines -- 6.2.9 Classification Using Sparse Representations -- 6.3 Performance Evaluation -- 6.3.1 Hold-Out -- 6.3.2 Cross-Validation -- 6.3.3 Leave-One-Out -- 6.3.4 Confusion Matrix -- 6.3.5 ROC and Precision-Recall Curves -- 6.4 Classifier Selection -- 6.5 Summary -- References -- 7 Deep Learning in X-ray Testing -- 7.1 Introduction -- 7.2 Neural Networks -- 7.2.1 Basics of Neural Networks -- 7.2.2 Training of Neural Networks -- 7.2.3 Examples of Neural Networks -- 7.3 Convolutional Neural Network (CNN) -- 7.3.1 Basics of CNN -- 7.3.2 Learning in CNN -- 7.3.3 Testing in CNN -- 7.3.4 Example of CNN -- 7.4 Pre-trained Models -- 7.4.1 Basics of Pre-trained Models -- 7.4.2 Example of Pre-trained Models -- 7.5 Transfer Learning -- 7.5.1 Basics of Transfer Learning -- 7.5.2 Training in Transfer Learning -- 7.5.3 Example of Transfer Learning -- 7.6 Generative Adversarial Networks (GANs) -- 7.6.1 Basics of GAN -- 7.6.2 Training of GAN -- 7.6.3 Implementation of GAN -- 7.6.4 Example of GAN -- 7.7 Detection Methods -- 7.7.1 Basics of Object Detection -- 7.7.2 Region Based Methods -- 7.7.3 YOLO -- 7.7.4 SSD -- 7.7.5 RetinaNet -- 7.7.6 Examples of Object Detection -- 7.8 Summary -- References -- 8 Simulation in X-ray Testing -- 8.1 Introduction -- 8.2 Modeling -- 8.2.1 Geometric Model -- 8.2.2 X-ray Imaging -- 8.3 Basic General Simulation -- 8.4 Flaw Simulation -- 8.4.1 Mask Superimposition -- 8.4.2 CAD Models for Object and Defect -- 8.4.3 CAD Models for Defects Only -- 8.5 Superimposition Using Multiplication of Images
  • 8.6 Simulation of X-ray Images Using GAN -- 8.7 Simulation with aRTist -- 8.8 Summary -- References -- 9 Applications in X-ray Testing -- 9.1 Introduction -- 9.2 Castings -- 9.2.1 State of the Art -- 9.2.2 An Application -- 9.2.3 An Example -- 9.3 Welds -- 9.3.1 State of the Art -- 9.3.2 An Application -- 9.3.3 An Example -- 9.4 Baggage -- 9.4.1 State of the Art -- 9.4.2 An Application -- 9.4.3 An Example Using Multiple Views -- 9.4.4 Example Using Deep Learning -- 9.5 Natural Products -- 9.5.1 State of the Art -- 9.5.2 An Application -- 9.5.3 An Example -- 9.6 Further Applications -- 9.6.1 Cargo Inspection -- 9.6.2 Electronic Circuits -- 9.7 Summary -- References -- Appendix A mathbbGDXray+ Database -- Index
  • 3.5.3 Correspondence Between Four Views or More -- 3.6 Three-Dimensional Reconstruction -- 3.6.1 Linear 3D Reconstruction from Two Views -- 3.6.2 3D Reconstruction from Two or More Views -- 3.7 Summary -- References -- 4 X-Ray Image Processing -- 4.1 Introduction -- 4.2 Image Preprocessing -- 4.2.1 Noise Removal -- 4.2.2 Contrast Enhancement -- 4.2.3 Shading Correction -- 4.3 Image Filtering -- 4.3.1 Linear Filtering -- 4.3.2 Non-linear Filtering -- 4.4 Edge Detection -- 4.4.1 Gradient Estimation -- 4.4.2 Laplacian-of-Gaussian (LoG) -- 4.4.3 Canny Edge Detector -- 4.5 Segmentation -- 4.5.1 Thresholding -- 4.5.2 Region Growing -- 4.5.3 Maximally Stable Extremal Regions (MSER) -- 4.6 Image Restoration -- 4.7 Summary -- References -- 5 X-ray Image Representation -- 5.1 Introduction -- 5.2 Geometric Features -- 5.2.1 Basic Geometric Features -- 5.2.2 Elliptical Features -- 5.2.3 Fourier Descriptors -- 5.2.4 Invariant Moments -- 5.3 Intensity Features -- 5.3.1 Basic Intensity Features -- 5.3.2 Contrast -- 5.3.3 Crossing Line Profiles -- 5.3.4 Intensity Moments -- 5.3.5 Statistical Textures -- 5.3.6 Gabor -- 5.3.7 Filter Banks -- 5.4 Descriptors -- 5.4.1 Local Binary Patterns -- 5.4.2 Binarized Statistical Image Features (BSIF) -- 5.4.3 Histogram of Oriented Gradients -- 5.4.4 Scale-Invariant Feature Transform (SIFT) -- 5.5 Sparse Representations -- 5.5.1 Traditional Dictionaries -- 5.5.2 Sparse Dictionaries -- 5.5.3 Dictionary Learning -- 5.6 Feature Selection -- 5.6.1 Basics -- 5.6.2 Exhaustive Search -- 5.6.3 Branch and Bound -- 5.6.4 Sequential Forward Selection -- 5.6.5 Sequential Backward Selection -- 5.6.6 Ranking by Class Separability Criteria -- 5.6.7 Forward Orthogonal Search -- 5.6.8 Least Square Estimation -- 5.6.9 Combination with Principal Components -- 5.6.10 Feature Selection Based in Mutual Information -- 5.7 A Final Example -- 5.8 Summary