Computer Vision for X-Ray Testing Imaging, Systems, Image Databases, and Algorithms

This accessible textbook presents an introduction to computer vision algorithms for industrially-relevant applications of X-ray testing. Covering complex topics in an easy-to-understand way, without requiring any prior knowledge in the field, the book provides a concise review of the key methodologi...

Full description

Saved in:
Bibliographic Details
Main Authors Mery, Domingo, Pieringer, Christian
Format eBook
LanguageEnglish
Published Cham Springer International Publishing AG 2020
Springer International Publishing
Edition2
Subjects
Online AccessGet full text
ISBN9783030567682
3030567680
DOI10.1007/978-3-030-56769-9

Cover

Abstract This accessible textbook presents an introduction to computer vision algorithms for industrially-relevant applications of X-ray testing. Covering complex topics in an easy-to-understand way, without requiring any prior knowledge in the field, the book provides a concise review of the key methodologies in computer vision for solving important problems in industrial radiology. The theoretical coverage is supported by numerous examples, each of which can be tested and evaluated by the reader using a freely-available Matlab toolbox and X-ray image database.Topics and features: introduces the mathematical background for monocular and multiple view geometry, which is commonly used in X-ray computer vision systems; describes the main techniques for image processing used in X-ray testing, including image filtering, edge detection, image segmentation and image restoration; presents a range of different representations for X-ray images, explaining how these enable new features to be extracted from the original image; examines a range of known X-ray image classifiers and classification strategies, and techniques for estimating the accuracy of a classifier; discusses some basic concepts for the simulation of X-ray images, and presents simple geometric and imaging models that can be used in the simulation; reviews a variety of applications for X-ray testing, from industrial inspection and baggage screening to the quality control of natural products; provides supporting material at an associated website, including a database of X-ray images and a Matlab toolbox for use with the book's many examples.This classroom-tested and hands-on guide is ideal for graduate and advanced undergraduate students interested in the practical application of image processing, pattern recognition and computer vision techniques for non-destructive quality testing and security inspection.
AbstractList This accessible textbook presents an introduction to computer vision algorithms for industrially-relevant applications of X-ray testing. Covering complex topics in an easy-to-understand way, without requiring any prior knowledge in the field, the book provides a concise review of the key methodologies in computer vision for solving important problems in industrial radiology. The theoretical coverage is supported by numerous examples, each of which can be tested and evaluated by the reader using a freely-available Matlab toolbox and X-ray image database.Topics and features: introduces the mathematical background for monocular and multiple view geometry, which is commonly used in X-ray computer vision systems; describes the main techniques for image processing used in X-ray testing, including image filtering, edge detection, image segmentation and image restoration; presents a range of different representations for X-ray images, explaining how these enable new features to be extracted from the original image; examines a range of known X-ray image classifiers and classification strategies, and techniques for estimating the accuracy of a classifier; discusses some basic concepts for the simulation of X-ray images, and presents simple geometric and imaging models that can be used in the simulation; reviews a variety of applications for X-ray testing, from industrial inspection and baggage screening to the quality control of natural products; provides supporting material at an associated website, including a database of X-ray images and a Matlab toolbox for use with the book's many examples.This classroom-tested and hands-on guide is ideal for graduate and advanced undergraduate students interested in the practical application of image processing, pattern recognition and computer vision techniques for non-destructive quality testing and security inspection.
Author Mery, Domingo
Pieringer, Christian
Author_xml – sequence: 1
  fullname: Mery, Domingo
– sequence: 2
  fullname: Pieringer, Christian
BookMark eNpVkEtPwzAQhI14CFr6A7iFE-JganudxD5CVB5SJSRUVdysTWNDaYhLnIL497gNl55WO_pmtLMDctT4xhJywdkNZywf61xRoAwYTbM801QfkFHUICo7QR_u7UqckAEXIIRikMEpGYXwwRgTUuRcwxm5LPznetPZNpkvw9I3ifNt8kpf8DeZ2dAtm7dzcuywDnb0P4dkfj-ZFY90-vzwVNxOKXIpOVCrcbEA1JgxLaocXYpVJaWSUDIpBTonNTh0NuManXCgJJZWibSsMhtBGJLrPhjDyv6Ed193wXzXtvR-FcxeyciOezas23ijbU1PcWa2b9rSBkzkzc5gto6r3rFu_dcmVjO74IVtuhZrM7krMpmmKlXwBwjGZDQ
ContentType eBook
Copyright Springer Nature Switzerland AG 2021
Copyright_xml – notice: Springer Nature Switzerland AG 2021
DOI 10.1007/978-3-030-56769-9
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISBN 9783030567699
3030567699
Edition 2
2nd ed. 2021
2nd Edition 2021
ExternalDocumentID 9783030567699
325114
EBC6455858
GroupedDBID 38.
AABBV
AABLV
ABNDO
ACWLQ
AEJLV
AEKFX
AELOD
AIYYB
ALMA_UNASSIGNED_HOLDINGS
ARRAB
BAHJK
BBABE
CZZ
DBWEY
IEZ
OCUHQ
ORHYB
SBO
TPJZQ
Z5O
Z7R
Z7S
Z7U
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
Z7V
ID FETCH-LOGICAL-a14413-e9acc3a9a6092d7af5add44843b0442aff493fafe619af2f384abe825bd6ed443
ISBN 9783030567682
3030567680
IngestDate Thu Jan 23 06:00:09 EST 2025
Tue Jul 29 20:37:30 EDT 2025
Mon Sep 22 04:50:57 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCallNum_Ident TA1634
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a14413-e9acc3a9a6092d7af5add44843b0442aff493fafe619af2f384abe825bd6ed443
OCLC 1232280363
PQID EBC6455858
PageCount 473
ParticipantIDs askewsholts_vlebooks_9783030567699
springer_books_10_1007_978_3_030_56769_9
proquest_ebookcentral_EBC6455858
PublicationCentury 2000
PublicationDate 2020
20201222
2020-12-21
PublicationDateYYYYMMDD 2020-01-01
2020-12-22
2020-12-21
PublicationDate_xml – year: 2020
  text: 2020
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationYear 2020
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
SSID ssj0002427193
Score 2.2751536
Snippet This accessible textbook presents an introduction to computer vision algorithms for industrially-relevant applications of X-ray testing. Covering complex...
SourceID askewsholts
springer
proquest
SourceType Aggregation Database
Publisher
SubjectTerms Computer Science
Computer vision
Image Processing and Computer Vision
Machine Learning
Quality Control, Reliability, Safety and Risk
Simulation and Modeling
Subtitle Imaging, Systems, Image Databases, and Algorithms
TableOfContents Intro -- Foreword to the Second Edition -- Foreword to the First Edition -- Preface to the Second Edition -- Preface to the First Edition -- Acknowledgements -- Contents -- About the Authors -- 1 X-ray Testing -- 1.1 Introduction -- 1.2 History -- 1.3 Physics of the X-rays -- 1.3.1 Formation of X-rays -- 1.3.2 Scattering and Absorption of X-rays -- 1.4 X-ray Testing System -- 1.4.1 X-ray Source -- 1.4.2 Manipulator -- 1.4.3 Image Intensifier -- 1.4.4 CCD-Camera -- 1.4.5 Flat Panel -- 1.4.6 Computer -- 1.5 X-ray Imaging -- 1.5.1 X-ray Image Formation -- 1.5.2 Image Acquisition -- 1.5.3 X-ray Image Visualization -- 1.5.4 Dual-Energy -- 1.6 Computer Vision -- 1.6.1 Geometric Model -- 1.6.2 Single View Analysis -- 1.6.3 Multiple View Analysis -- 1.6.4 Deep Learning -- 1.6.5 Computed Tomography -- 1.7 Code and Data -- 1.7.1 Pyxvis Library -- 1.7.2 mathbbGDXray+ Database -- 1.8 General Methodology for X-ray Testing -- 1.9 Summary -- References -- 2 Images for X-ray Testing -- 2.1 Introduction -- 2.2 Structure of the Database -- 2.3 Castings -- 2.4 Welds -- 2.5 Baggage -- 2.6 Natural Objects -- 2.7 Settings -- 2.8 Python Commands -- 2.9 Summary -- References -- 3 Geometry in X-ray Testing -- 3.1 Introduction -- 3.2 Geometric Transformations -- 3.2.1 Homogeneous Coordinates -- 3.2.2 2D rightarrow 2D Transformation -- 3.2.3 3D rightarrow 3D Transformation -- 3.2.4 3D rightarrow 2D Transformation -- 3.3 Geometric Model of an X-ray Computer Vision System -- 3.3.1 A General Model -- 3.3.2 Geometric Models of the Computer Vision System -- 3.3.3 Explicit Geometric Model Using an Image Intensifier -- 3.3.4 Multiple View Model -- 3.4 Calibration -- 3.4.1 Calibration Using Python -- 3.4.2 Experiments of Calibration -- 3.5 Geometric Correspondence in Multiple Views -- 3.5.1 Correspondence Between Two Views -- 3.5.2 Correspondence Between Three Views
References -- 6 Classification in X-Ray Testing -- 6.1 Introduction -- 6.2 Classifiers -- 6.2.1 Minimal Distance -- 6.2.2 Mahalanobis Distance -- 6.2.3 Bayes -- 6.2.4 Linear Discriminant Analysis -- 6.2.5 Quadratic Discriminant Analysis -- 6.2.6 K-Nearest Neighbors -- 6.2.7 Neural Networks -- 6.2.8 Support Vector Machines -- 6.2.9 Classification Using Sparse Representations -- 6.3 Performance Evaluation -- 6.3.1 Hold-Out -- 6.3.2 Cross-Validation -- 6.3.3 Leave-One-Out -- 6.3.4 Confusion Matrix -- 6.3.5 ROC and Precision-Recall Curves -- 6.4 Classifier Selection -- 6.5 Summary -- References -- 7 Deep Learning in X-ray Testing -- 7.1 Introduction -- 7.2 Neural Networks -- 7.2.1 Basics of Neural Networks -- 7.2.2 Training of Neural Networks -- 7.2.3 Examples of Neural Networks -- 7.3 Convolutional Neural Network (CNN) -- 7.3.1 Basics of CNN -- 7.3.2 Learning in CNN -- 7.3.3 Testing in CNN -- 7.3.4 Example of CNN -- 7.4 Pre-trained Models -- 7.4.1 Basics of Pre-trained Models -- 7.4.2 Example of Pre-trained Models -- 7.5 Transfer Learning -- 7.5.1 Basics of Transfer Learning -- 7.5.2 Training in Transfer Learning -- 7.5.3 Example of Transfer Learning -- 7.6 Generative Adversarial Networks (GANs) -- 7.6.1 Basics of GAN -- 7.6.2 Training of GAN -- 7.6.3 Implementation of GAN -- 7.6.4 Example of GAN -- 7.7 Detection Methods -- 7.7.1 Basics of Object Detection -- 7.7.2 Region Based Methods -- 7.7.3 YOLO -- 7.7.4 SSD -- 7.7.5 RetinaNet -- 7.7.6 Examples of Object Detection -- 7.8 Summary -- References -- 8 Simulation in X-ray Testing -- 8.1 Introduction -- 8.2 Modeling -- 8.2.1 Geometric Model -- 8.2.2 X-ray Imaging -- 8.3 Basic General Simulation -- 8.4 Flaw Simulation -- 8.4.1 Mask Superimposition -- 8.4.2 CAD Models for Object and Defect -- 8.4.3 CAD Models for Defects Only -- 8.5 Superimposition Using Multiplication of Images
8.6 Simulation of X-ray Images Using GAN -- 8.7 Simulation with aRTist -- 8.8 Summary -- References -- 9 Applications in X-ray Testing -- 9.1 Introduction -- 9.2 Castings -- 9.2.1 State of the Art -- 9.2.2 An Application -- 9.2.3 An Example -- 9.3 Welds -- 9.3.1 State of the Art -- 9.3.2 An Application -- 9.3.3 An Example -- 9.4 Baggage -- 9.4.1 State of the Art -- 9.4.2 An Application -- 9.4.3 An Example Using Multiple Views -- 9.4.4 Example Using Deep Learning -- 9.5 Natural Products -- 9.5.1 State of the Art -- 9.5.2 An Application -- 9.5.3 An Example -- 9.6 Further Applications -- 9.6.1 Cargo Inspection -- 9.6.2 Electronic Circuits -- 9.7 Summary -- References -- Appendix A mathbbGDXray+ Database -- Index
3.5.3 Correspondence Between Four Views or More -- 3.6 Three-Dimensional Reconstruction -- 3.6.1 Linear 3D Reconstruction from Two Views -- 3.6.2 3D Reconstruction from Two or More Views -- 3.7 Summary -- References -- 4 X-Ray Image Processing -- 4.1 Introduction -- 4.2 Image Preprocessing -- 4.2.1 Noise Removal -- 4.2.2 Contrast Enhancement -- 4.2.3 Shading Correction -- 4.3 Image Filtering -- 4.3.1 Linear Filtering -- 4.3.2 Non-linear Filtering -- 4.4 Edge Detection -- 4.4.1 Gradient Estimation -- 4.4.2 Laplacian-of-Gaussian (LoG) -- 4.4.3 Canny Edge Detector -- 4.5 Segmentation -- 4.5.1 Thresholding -- 4.5.2 Region Growing -- 4.5.3 Maximally Stable Extremal Regions (MSER) -- 4.6 Image Restoration -- 4.7 Summary -- References -- 5 X-ray Image Representation -- 5.1 Introduction -- 5.2 Geometric Features -- 5.2.1 Basic Geometric Features -- 5.2.2 Elliptical Features -- 5.2.3 Fourier Descriptors -- 5.2.4 Invariant Moments -- 5.3 Intensity Features -- 5.3.1 Basic Intensity Features -- 5.3.2 Contrast -- 5.3.3 Crossing Line Profiles -- 5.3.4 Intensity Moments -- 5.3.5 Statistical Textures -- 5.3.6 Gabor -- 5.3.7 Filter Banks -- 5.4 Descriptors -- 5.4.1 Local Binary Patterns -- 5.4.2 Binarized Statistical Image Features (BSIF) -- 5.4.3 Histogram of Oriented Gradients -- 5.4.4 Scale-Invariant Feature Transform (SIFT) -- 5.5 Sparse Representations -- 5.5.1 Traditional Dictionaries -- 5.5.2 Sparse Dictionaries -- 5.5.3 Dictionary Learning -- 5.6 Feature Selection -- 5.6.1 Basics -- 5.6.2 Exhaustive Search -- 5.6.3 Branch and Bound -- 5.6.4 Sequential Forward Selection -- 5.6.5 Sequential Backward Selection -- 5.6.6 Ranking by Class Separability Criteria -- 5.6.7 Forward Orthogonal Search -- 5.6.8 Least Square Estimation -- 5.6.9 Combination with Principal Components -- 5.6.10 Feature Selection Based in Mutual Information -- 5.7 A Final Example -- 5.8 Summary
Title Computer Vision for X-Ray Testing
URI https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=6455858
http://link.springer.com/10.1007/978-3-030-56769-9
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9783030567699
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NaxsxEB2S-FJfmo-WumnKJoQSKFuc1X5Yx9S4MSbtoTjGNyGtJQht7LTe5JBf3ydZ-2ETCM1lsWUxaPVkad5I80R0KqWMcs2tvh0DQVEgKCoyLMyzc8VU1xjpQgPff6TD63g0Taa1lo7LLinUl_zxybySl6CKMuBqs2T_A9nKKArwGfjiCYTx3HB-q69eU8DfxfB54lLD3VnBafjTpnRY1Qy_GjldXb9NvrhF6aKaCG-8AmGtL1AOEx8BiLobEYAyArgRQ2yEsS4u11gjc7wBPCN6cg5tHptAzdBW5SGvF4zqGN_gaz-NExCO3qe7P6G9ycvuePtrTbZpO8sw57QuBqOrSRX3gkuQwWm0aTZlM7z0Vt2scvfZCwCvNaNNbbn8hQUAi0OxXOMFG1vZzkMY71JL27SRPdrS83167Z37wE-dy31qN5QfD-i4RDBYIRgAwcAhGHgE39Dk22DcH4b-topQWlLKQs1lnjPJZdrl0SyTJsHaAfYbY8zHcSSNiTkz0mhwVmnwh-jFUmkwdDVLNSqyt7QzX8z1OwoM3jU5T5OZ1D3MsJGCl8gNLEU6YTLNO3TS6ATx8NvtrC9Foxc571BQ9o1wv_vjvqKGrUNnZZ-JlYVSxRqWBBOwJZwxwd8_b-2QXtXD8wPtFH_v9RFctkJ99KPgH8_gOoI
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Computer+Vision+for+X-Ray+Testing&rft.au=Mery%2C+Domingo&rft.au=Pieringer%2C+Christian&rft.date=2020-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783030567682&rft_id=info:doi/10.1007%2F978-3-030-56769-9&rft.externalDocID=EBC6455858
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97830305%2F9783030567699.jpg
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fmedia.springernature.com%2Fw306%2Fspringer-static%2Fcover-hires%2Fbook%2F978-3-030-56769-9