Computer Vision for X-Ray Testing Imaging, Systems, Image Databases, and Algorithms
This accessible textbook presents an introduction to computer vision algorithms for industrially-relevant applications of X-ray testing. Covering complex topics in an easy-to-understand way, without requiring any prior knowledge in the field, the book provides a concise review of the key methodologi...
Saved in:
| Main Authors | , |
|---|---|
| Format | eBook |
| Language | English |
| Published |
Cham
Springer International Publishing AG
2020
Springer International Publishing |
| Edition | 2 |
| Subjects | |
| Online Access | Get full text |
| ISBN | 9783030567682 3030567680 |
| DOI | 10.1007/978-3-030-56769-9 |
Cover
| Abstract | This accessible textbook presents an introduction to computer vision algorithms for industrially-relevant applications of X-ray testing. Covering complex topics in an easy-to-understand way, without requiring any prior knowledge in the field, the book provides a concise review of the key methodologies in computer vision for solving important problems in industrial radiology. The theoretical coverage is supported by numerous examples, each of which can be tested and evaluated by the reader using a freely-available Matlab toolbox and X-ray image database.Topics and features: introduces the mathematical background for monocular and multiple view geometry, which is commonly used in X-ray computer vision systems; describes the main techniques for image processing used in X-ray testing, including image filtering, edge detection, image segmentation and image restoration; presents a range of different representations for X-ray images, explaining how these enable new features to be extracted from the original image; examines a range of known X-ray image classifiers and classification strategies, and techniques for estimating the accuracy of a classifier; discusses some basic concepts for the simulation of X-ray images, and presents simple geometric and imaging models that can be used in the simulation; reviews a variety of applications for X-ray testing, from industrial inspection and baggage screening to the quality control of natural products; provides supporting material at an associated website, including a database of X-ray images and a Matlab toolbox for use with the book's many examples.This classroom-tested and hands-on guide is ideal for graduate and advanced undergraduate students interested in the practical application of image processing, pattern recognition and computer vision techniques for non-destructive quality testing and security inspection. |
|---|---|
| AbstractList | This accessible textbook presents an introduction to computer vision algorithms for industrially-relevant applications of X-ray testing. Covering complex topics in an easy-to-understand way, without requiring any prior knowledge in the field, the book provides a concise review of the key methodologies in computer vision for solving important problems in industrial radiology. The theoretical coverage is supported by numerous examples, each of which can be tested and evaluated by the reader using a freely-available Matlab toolbox and X-ray image database.Topics and features: introduces the mathematical background for monocular and multiple view geometry, which is commonly used in X-ray computer vision systems; describes the main techniques for image processing used in X-ray testing, including image filtering, edge detection, image segmentation and image restoration; presents a range of different representations for X-ray images, explaining how these enable new features to be extracted from the original image; examines a range of known X-ray image classifiers and classification strategies, and techniques for estimating the accuracy of a classifier; discusses some basic concepts for the simulation of X-ray images, and presents simple geometric and imaging models that can be used in the simulation; reviews a variety of applications for X-ray testing, from industrial inspection and baggage screening to the quality control of natural products; provides supporting material at an associated website, including a database of X-ray images and a Matlab toolbox for use with the book's many examples.This classroom-tested and hands-on guide is ideal for graduate and advanced undergraduate students interested in the practical application of image processing, pattern recognition and computer vision techniques for non-destructive quality testing and security inspection. |
| Author | Mery, Domingo Pieringer, Christian |
| Author_xml | – sequence: 1 fullname: Mery, Domingo – sequence: 2 fullname: Pieringer, Christian |
| BookMark | eNpVkEtPwzAQhI14CFr6A7iFE-JganudxD5CVB5SJSRUVdysTWNDaYhLnIL497gNl55WO_pmtLMDctT4xhJywdkNZywf61xRoAwYTbM801QfkFHUICo7QR_u7UqckAEXIIRikMEpGYXwwRgTUuRcwxm5LPznetPZNpkvw9I3ifNt8kpf8DeZ2dAtm7dzcuywDnb0P4dkfj-ZFY90-vzwVNxOKXIpOVCrcbEA1JgxLaocXYpVJaWSUDIpBTonNTh0NuManXCgJJZWibSsMhtBGJLrPhjDyv6Ed193wXzXtvR-FcxeyciOezas23ijbU1PcWa2b9rSBkzkzc5gto6r3rFu_dcmVjO74IVtuhZrM7krMpmmKlXwBwjGZDQ |
| ContentType | eBook |
| Copyright | Springer Nature Switzerland AG 2021 |
| Copyright_xml | – notice: Springer Nature Switzerland AG 2021 |
| DOI | 10.1007/978-3-030-56769-9 |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Computer Science |
| EISBN | 9783030567699 3030567699 |
| Edition | 2 2nd ed. 2021 2nd Edition 2021 |
| ExternalDocumentID | 9783030567699 325114 EBC6455858 |
| GroupedDBID | 38. AABBV AABLV ABNDO ACWLQ AEJLV AEKFX AELOD AIYYB ALMA_UNASSIGNED_HOLDINGS ARRAB BAHJK BBABE CZZ DBWEY IEZ OCUHQ ORHYB SBO TPJZQ Z5O Z7R Z7S Z7U Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z84 Z85 Z87 Z88 Z7V |
| ID | FETCH-LOGICAL-a14413-e9acc3a9a6092d7af5add44843b0442aff493fafe619af2f384abe825bd6ed443 |
| ISBN | 9783030567682 3030567680 |
| IngestDate | Thu Jan 23 06:00:09 EST 2025 Tue Jul 29 20:37:30 EDT 2025 Mon Sep 22 04:50:57 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| LCCallNum_Ident | TA1634 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a14413-e9acc3a9a6092d7af5add44843b0442aff493fafe619af2f384abe825bd6ed443 |
| OCLC | 1232280363 |
| PQID | EBC6455858 |
| PageCount | 473 |
| ParticipantIDs | askewsholts_vlebooks_9783030567699 springer_books_10_1007_978_3_030_56769_9 proquest_ebookcentral_EBC6455858 |
| PublicationCentury | 2000 |
| PublicationDate | 2020 20201222 2020-12-21 |
| PublicationDateYYYYMMDD | 2020-01-01 2020-12-22 2020-12-21 |
| PublicationDate_xml | – year: 2020 text: 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham |
| PublicationYear | 2020 |
| Publisher | Springer International Publishing AG Springer International Publishing |
| Publisher_xml | – name: Springer International Publishing AG – name: Springer International Publishing |
| SSID | ssj0002427193 |
| Score | 2.2751536 |
| Snippet | This accessible textbook presents an introduction to computer vision algorithms for industrially-relevant applications of X-ray testing. Covering complex... |
| SourceID | askewsholts springer proquest |
| SourceType | Aggregation Database Publisher |
| SubjectTerms | Computer Science Computer vision Image Processing and Computer Vision Machine Learning Quality Control, Reliability, Safety and Risk Simulation and Modeling |
| Subtitle | Imaging, Systems, Image Databases, and Algorithms |
| TableOfContents | Intro -- Foreword to the Second Edition -- Foreword to the First Edition -- Preface to the Second Edition -- Preface to the First Edition -- Acknowledgements -- Contents -- About the Authors -- 1 X-ray Testing -- 1.1 Introduction -- 1.2 History -- 1.3 Physics of the X-rays -- 1.3.1 Formation of X-rays -- 1.3.2 Scattering and Absorption of X-rays -- 1.4 X-ray Testing System -- 1.4.1 X-ray Source -- 1.4.2 Manipulator -- 1.4.3 Image Intensifier -- 1.4.4 CCD-Camera -- 1.4.5 Flat Panel -- 1.4.6 Computer -- 1.5 X-ray Imaging -- 1.5.1 X-ray Image Formation -- 1.5.2 Image Acquisition -- 1.5.3 X-ray Image Visualization -- 1.5.4 Dual-Energy -- 1.6 Computer Vision -- 1.6.1 Geometric Model -- 1.6.2 Single View Analysis -- 1.6.3 Multiple View Analysis -- 1.6.4 Deep Learning -- 1.6.5 Computed Tomography -- 1.7 Code and Data -- 1.7.1 Pyxvis Library -- 1.7.2 mathbbGDXray+ Database -- 1.8 General Methodology for X-ray Testing -- 1.9 Summary -- References -- 2 Images for X-ray Testing -- 2.1 Introduction -- 2.2 Structure of the Database -- 2.3 Castings -- 2.4 Welds -- 2.5 Baggage -- 2.6 Natural Objects -- 2.7 Settings -- 2.8 Python Commands -- 2.9 Summary -- References -- 3 Geometry in X-ray Testing -- 3.1 Introduction -- 3.2 Geometric Transformations -- 3.2.1 Homogeneous Coordinates -- 3.2.2 2D rightarrow 2D Transformation -- 3.2.3 3D rightarrow 3D Transformation -- 3.2.4 3D rightarrow 2D Transformation -- 3.3 Geometric Model of an X-ray Computer Vision System -- 3.3.1 A General Model -- 3.3.2 Geometric Models of the Computer Vision System -- 3.3.3 Explicit Geometric Model Using an Image Intensifier -- 3.3.4 Multiple View Model -- 3.4 Calibration -- 3.4.1 Calibration Using Python -- 3.4.2 Experiments of Calibration -- 3.5 Geometric Correspondence in Multiple Views -- 3.5.1 Correspondence Between Two Views -- 3.5.2 Correspondence Between Three Views References -- 6 Classification in X-Ray Testing -- 6.1 Introduction -- 6.2 Classifiers -- 6.2.1 Minimal Distance -- 6.2.2 Mahalanobis Distance -- 6.2.3 Bayes -- 6.2.4 Linear Discriminant Analysis -- 6.2.5 Quadratic Discriminant Analysis -- 6.2.6 K-Nearest Neighbors -- 6.2.7 Neural Networks -- 6.2.8 Support Vector Machines -- 6.2.9 Classification Using Sparse Representations -- 6.3 Performance Evaluation -- 6.3.1 Hold-Out -- 6.3.2 Cross-Validation -- 6.3.3 Leave-One-Out -- 6.3.4 Confusion Matrix -- 6.3.5 ROC and Precision-Recall Curves -- 6.4 Classifier Selection -- 6.5 Summary -- References -- 7 Deep Learning in X-ray Testing -- 7.1 Introduction -- 7.2 Neural Networks -- 7.2.1 Basics of Neural Networks -- 7.2.2 Training of Neural Networks -- 7.2.3 Examples of Neural Networks -- 7.3 Convolutional Neural Network (CNN) -- 7.3.1 Basics of CNN -- 7.3.2 Learning in CNN -- 7.3.3 Testing in CNN -- 7.3.4 Example of CNN -- 7.4 Pre-trained Models -- 7.4.1 Basics of Pre-trained Models -- 7.4.2 Example of Pre-trained Models -- 7.5 Transfer Learning -- 7.5.1 Basics of Transfer Learning -- 7.5.2 Training in Transfer Learning -- 7.5.3 Example of Transfer Learning -- 7.6 Generative Adversarial Networks (GANs) -- 7.6.1 Basics of GAN -- 7.6.2 Training of GAN -- 7.6.3 Implementation of GAN -- 7.6.4 Example of GAN -- 7.7 Detection Methods -- 7.7.1 Basics of Object Detection -- 7.7.2 Region Based Methods -- 7.7.3 YOLO -- 7.7.4 SSD -- 7.7.5 RetinaNet -- 7.7.6 Examples of Object Detection -- 7.8 Summary -- References -- 8 Simulation in X-ray Testing -- 8.1 Introduction -- 8.2 Modeling -- 8.2.1 Geometric Model -- 8.2.2 X-ray Imaging -- 8.3 Basic General Simulation -- 8.4 Flaw Simulation -- 8.4.1 Mask Superimposition -- 8.4.2 CAD Models for Object and Defect -- 8.4.3 CAD Models for Defects Only -- 8.5 Superimposition Using Multiplication of Images 8.6 Simulation of X-ray Images Using GAN -- 8.7 Simulation with aRTist -- 8.8 Summary -- References -- 9 Applications in X-ray Testing -- 9.1 Introduction -- 9.2 Castings -- 9.2.1 State of the Art -- 9.2.2 An Application -- 9.2.3 An Example -- 9.3 Welds -- 9.3.1 State of the Art -- 9.3.2 An Application -- 9.3.3 An Example -- 9.4 Baggage -- 9.4.1 State of the Art -- 9.4.2 An Application -- 9.4.3 An Example Using Multiple Views -- 9.4.4 Example Using Deep Learning -- 9.5 Natural Products -- 9.5.1 State of the Art -- 9.5.2 An Application -- 9.5.3 An Example -- 9.6 Further Applications -- 9.6.1 Cargo Inspection -- 9.6.2 Electronic Circuits -- 9.7 Summary -- References -- Appendix A mathbbGDXray+ Database -- Index 3.5.3 Correspondence Between Four Views or More -- 3.6 Three-Dimensional Reconstruction -- 3.6.1 Linear 3D Reconstruction from Two Views -- 3.6.2 3D Reconstruction from Two or More Views -- 3.7 Summary -- References -- 4 X-Ray Image Processing -- 4.1 Introduction -- 4.2 Image Preprocessing -- 4.2.1 Noise Removal -- 4.2.2 Contrast Enhancement -- 4.2.3 Shading Correction -- 4.3 Image Filtering -- 4.3.1 Linear Filtering -- 4.3.2 Non-linear Filtering -- 4.4 Edge Detection -- 4.4.1 Gradient Estimation -- 4.4.2 Laplacian-of-Gaussian (LoG) -- 4.4.3 Canny Edge Detector -- 4.5 Segmentation -- 4.5.1 Thresholding -- 4.5.2 Region Growing -- 4.5.3 Maximally Stable Extremal Regions (MSER) -- 4.6 Image Restoration -- 4.7 Summary -- References -- 5 X-ray Image Representation -- 5.1 Introduction -- 5.2 Geometric Features -- 5.2.1 Basic Geometric Features -- 5.2.2 Elliptical Features -- 5.2.3 Fourier Descriptors -- 5.2.4 Invariant Moments -- 5.3 Intensity Features -- 5.3.1 Basic Intensity Features -- 5.3.2 Contrast -- 5.3.3 Crossing Line Profiles -- 5.3.4 Intensity Moments -- 5.3.5 Statistical Textures -- 5.3.6 Gabor -- 5.3.7 Filter Banks -- 5.4 Descriptors -- 5.4.1 Local Binary Patterns -- 5.4.2 Binarized Statistical Image Features (BSIF) -- 5.4.3 Histogram of Oriented Gradients -- 5.4.4 Scale-Invariant Feature Transform (SIFT) -- 5.5 Sparse Representations -- 5.5.1 Traditional Dictionaries -- 5.5.2 Sparse Dictionaries -- 5.5.3 Dictionary Learning -- 5.6 Feature Selection -- 5.6.1 Basics -- 5.6.2 Exhaustive Search -- 5.6.3 Branch and Bound -- 5.6.4 Sequential Forward Selection -- 5.6.5 Sequential Backward Selection -- 5.6.6 Ranking by Class Separability Criteria -- 5.6.7 Forward Orthogonal Search -- 5.6.8 Least Square Estimation -- 5.6.9 Combination with Principal Components -- 5.6.10 Feature Selection Based in Mutual Information -- 5.7 A Final Example -- 5.8 Summary |
| Title | Computer Vision for X-Ray Testing |
| URI | https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=6455858 http://link.springer.com/10.1007/978-3-030-56769-9 https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9783030567699 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NaxsxEB2S-FJfmo-WumnKJoQSKFuc1X5Yx9S4MSbtoTjGNyGtJQht7LTe5JBf3ydZ-2ETCM1lsWUxaPVkad5I80R0KqWMcs2tvh0DQVEgKCoyLMyzc8VU1xjpQgPff6TD63g0Taa1lo7LLinUl_zxybySl6CKMuBqs2T_A9nKKArwGfjiCYTx3HB-q69eU8DfxfB54lLD3VnBafjTpnRY1Qy_GjldXb9NvrhF6aKaCG-8AmGtL1AOEx8BiLobEYAyArgRQ2yEsS4u11gjc7wBPCN6cg5tHptAzdBW5SGvF4zqGN_gaz-NExCO3qe7P6G9ycvuePtrTbZpO8sw57QuBqOrSRX3gkuQwWm0aTZlM7z0Vt2scvfZCwCvNaNNbbn8hQUAi0OxXOMFG1vZzkMY71JL27SRPdrS83167Z37wE-dy31qN5QfD-i4RDBYIRgAwcAhGHgE39Dk22DcH4b-topQWlLKQs1lnjPJZdrl0SyTJsHaAfYbY8zHcSSNiTkz0mhwVmnwh-jFUmkwdDVLNSqyt7QzX8z1OwoM3jU5T5OZ1D3MsJGCl8gNLEU6YTLNO3TS6ATx8NvtrC9Foxc571BQ9o1wv_vjvqKGrUNnZZ-JlYVSxRqWBBOwJZwxwd8_b-2QXtXD8wPtFH_v9RFctkJ99KPgH8_gOoI |
| linkProvider | Library Specific Holdings |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Computer+Vision+for+X-Ray+Testing&rft.au=Mery%2C+Domingo&rft.au=Pieringer%2C+Christian&rft.date=2020-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783030567682&rft_id=info:doi/10.1007%2F978-3-030-56769-9&rft.externalDocID=EBC6455858 |
| thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97830305%2F9783030567699.jpg |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fmedia.springernature.com%2Fw306%2Fspringer-static%2Fcover-hires%2Fbook%2F978-3-030-56769-9 |