3D Printing for Energy Applications
This book delivers an insightful and cutting-edge exploration of the applications of 3D printing to the fabrication of complex devices in the energy sector. The book covers aspects related to additive manufacturing of functional materials with applicability in the energy sector. It reviews both the...
Saved in:
Main Authors | , |
---|---|
Format | eBook Book |
Language | English |
Published |
Hoboken
John Wiley & Sons
2021
John Wiley & Sons, Incorporated |
Edition | 1 |
Subjects | |
Online Access | Get full text |
ISBN | 1119560756 9781119560753 |
DOI | 10.1002/9781119560807 |
Cover
Table of Contents:
- Title Page Introduction to 3D Printing Technologies Table of Contents 1. Additive Manufacturing of Functional Metals 2. Additive Manufacturing of Functional Ceramics 3. 3D Printing of Functional Composites with Strain Sensing and Self-Heating Capabilities 4. Computational Design of Complex 3D Printed Objects 5. Multicomponent and Multimaterials Printing 6. Tailoring of AM Component Properties via Laser Powder Bed Fusion 7. 3D Printing Challenges and New Concepts for Production of Complex Objects 8. Current State of 3D Printing Technologies and Materials 9. Capacitors 10. 3D-Printing for Solar Cells 11. 3D Printing of Fuel Cells and Electrolyzers 12. DED for Repair and Manufacture of Turbomachinery Components 13. Thermoelectrics 14. Carbon Capture, Usage, and Storage Index
- 11.4 3D Printing of Bio-Fuel Cells Technology -- 11.5 Conclusions and Outlook -- References -- Chapter 12 DED for Repair and Manufacture of Turbomachinery Components -- 12.1 Introduction -- 12.2 DED Based Repair of Turbomachinery Components -- 12.2.1 DED Process -- 12.2.2 Work Environment -- 12.2.3 Process Chain for the Repair of Turbine Blades -- 12.2.3.1 Step 1: "Machining & -- Preparation" -- 12.2.3.2 Step 2: "Reverse Engineering" -- 12.2.3.3 Step 3: "Generation of Tool Paths" -- 12.2.3.4 Step 4: "DED Process" -- 12.2.3.5 Step 5: "Adaptive Machining" -- 12.3 DED Based Hybrid Manufacturing of New Components -- 12.3.1 Hybrid Additive Manufacturing -- 12.3.2 Turbocharger Nozzle Ring -- 12.3.3 Hybrid Production Cell -- 12.3.4 Process Chain for Hybrid Additive Manufacturing of Nozzle Rings -- 12.3.4.1 Step 1: "Choice of DED Strategy" -- 12.3.4.2 Step 2: "DED Process" -- 12.3.4.3 Step 3: "Optical Metrology" -- 12.3.4.4 Step 4: "Adaptive Milling" -- 12.3.4.5 Step 5: "Joining of Top Ring" -- 12.4 Summary -- Acknowledgments -- References -- Chapter 13 Thermoelectrics -- 13.1 Introduction -- 13.2 Additive Manufacturing Techniques of Thermoelectric Materials -- 13.2.1 Extrusion-Based Additive Manufacturing Process -- 13.2.2 Fused Deposition Modeling (FDM) Technique -- 13.2.3 Stereolithography Apparatus (SLA) Process -- 13.2.4 Selective Laser Sintering (SLS) Process -- 13.2.5 Summary and Outlook -- Acknowledgements -- References -- Chapter 14 Carbon Capture, Usage, and Storage -- 14.1 Introduction -- 14.2 Can 3D Printing Be Used to Fabricate a CO2 Capture Process at Scale? -- 14.3 A Brief Note on 3D Printing and CO2 at Smaller Scales & -- Research Efforts -- 14.4 Conclusions -- References -- Index -- EULA
- Intro -- Title Page -- Copyright Page -- Contents -- Contributors -- Introduction to 3D Printing Technologies -- Part 1 3D printing of functional materials -- Chapter 1 Additive Manufacturing of Functional Metals -- 1.1 Introduction -- 1.1.1 Industrial Application of Metal AM in the Energy Sector -- 1.1.2 Geometrical Gradients in AM -- 1.1.3 Material Gradients in AM -- 1.2 Powder Bed Fusion AM -- 1.2.1 Geometric Gradients in PBF -- 1.2.2 Material Gradients in PBF -- 1.3 Direct Material Deposition -- 1.3.1 Powder and Wire Feedstock for Near-Net-Shape AM -- 1.3.2 Functional Material Gradients in DED -- 1.4 Solid-State Additive Manufacturing -- 1.5 Hybrid AM Through Green Body Sintering -- 1.5.1 Common AM Technologies for Green Body Manufacturing -- 1.5.2 CAD Design and Shrinkage Compensation -- 1.5.3 Additive Manufacture -- 1.5.4 Debinding and Sintering -- 1.5.5 Functionally Graded Components in Sintered Components -- 1.6 Conclusions -- Acknowledgment -- References -- Chapter 2 Additive Manufacturing of Functional Ceramics -- 2.1 Introduction -- 2.1.1 Why 3D Printing of Technical Ceramics? -- 2.1.2 Materials and Applications -- 2.2 Ceramics 3D Printing Technologies -- 2.2.1 Lamination Object Modeling (LOM) -- 2.2.2 Ceramics Extrusion -- 2.2.2.1 Robocasting/Direct Ink Writing -- 2.2.2.2 Fused Deposition of Ceramics -- 2.2.3 Photopolymerization -- 2.2.4 Laser-Based Technologies -- 2.2.5 Jetting -- References -- Chapter 3 3D Printing of Functional Composites with Strain Sensing and Self-Heating Capabilities -- 3.1 Introduction -- 3.2 Carbon Nanotube Reinforced Functional Polymer Nanocomposites -- 3.2.1 Strain Sensing of CNT Reinforced Polymer Nanocomposites -- 3.2.2 Resistive Heating of CNT Reinforced Polymer Nanocomposites -- 3.3 Printing Strategies -- 3.3.1 Spray Deposition Modeling and Fused Deposition Modeling
- 9.2.1.1 Electrostatic Capacitors -- 9.2.1.2 Electrolytic Capacitors -- 9.2.1.3 Electrochemical Capacitors -- 9.2.2 Capacitor Components: Function and Requirements -- 9.2.3 Performance -- 9.2.4 The Challenge of Manufacturing Capacitors -- 9.3 The Promise of Additive Manufacturing -- 9.4 Additive Manufacturing Technologies: Considerations for Capacitor Fabrication -- 9.4.1 AM Process Categories -- 9.4.1.1 Material Extrusion - Fused Filament Fabrication -- 9.4.1.2 Material Extrusion - Direct Ink Writing -- 9.4.1.3 Vat Polymerization -- 9.4.1.4 Powder Bed Fusion -- 9.4.1.5 Material Jetting -- 9.4.1.6 Binder Jetting -- 9.4.2 Multi-technology or Hybrid Printing -- 9.4.3 Complete Capacitor Devices Fabricatedby Additive Manufacturing -- 9.5 Summary and Outlook -- References -- Chapter 10 3D-Printing for Solar Cells -- 10.1 Introduction -- 10.2 Examples of 3D-Printing for PV -- 10.3 Geometric Light Management -- 10.3.1 Background -- 10.3.2 Optical Model for External Light Trapping -- 10.3.3 Design and 3D-Printing of the External Light Trap -- 10.3.4 Characterization -- 10.4 Conclusions -- References -- Chapter 11 3D Printing of Fuel Cells and Electrolyzers -- 11.1 Introduction -- 11.2 3D Printing of Solid Oxide Cells Technology -- 11.2.1 Solid Oxide Fuel Cells -- 11.2.1.1 SOFC Electrolyte -- 11.2.1.2 SOFC Electrodes -- 11.2.2 Solid Oxide Electrolysis Cells -- 11.2.3 SOC Stacks and Components -- 11.3 3D Printing of Polymer Exchange Membranes Cells Technology -- 11.3.1 Polymeric Exchange Membrane Fuel Cells -- 11.3.1.1 PEMFC Electrolyte -- 11.3.1.2 PEMFC Catalysts Layer -- 11.3.1.3 PEMFC Gas Diffusion Layer -- 11.3.1.4 PEMFC Bipolar Plates and Flow Fields -- 11.3.2 Polymer Exchange Membrane Electrolysis Cells -- 11.3.2.1 PEMEC Liquid Gas Diffusion Layer -- 11.3.2.2 PEMEC Bipolar Plates and Flow Fields -- 11.3.2.3 Fully Printed PEMEC
- 3.3.2 Printing of Highly Flexible Carbon Nanotube/Polydimethylsilicone Strain Sensor -- 3.3.3 Printing of Carbon Nanotube/Shape Memory Polymer Nanocomposites -- 3.4 Strain Sensing of Printed Nanocomposites -- 3.5 Electric Heating Performance Analysis -- 3.6 Electrical Actuation of the CNT/SMP Nanocomposites -- 3.7 Conclusions -- References -- Part B 3D printing challenges for production of complex objects -- Chapter 4 Computational Design of Complex 3D Printed Objects -- 4.1 Introduction -- 4.2 Dedicated Computational Design for 3D Printing -- 4.2.1 Overhang Angle Control Approaches -- 4.2.1.1 Local Angle Control -- 4.2.1.2 Physics-Based Constraints -- 4.2.1.3 Simplified Printing Process -- 4.2.2 Design Scenarios -- 4.3 Case Study: Computational Design of a 3D-Printed Flow Manifold -- 4.3.1 Fluid Flow TO -- 4.3.2 Front Propagation-Based 3D Printing Constraint -- 4.3.3 Fluid TO with 3D Printing Constraint -- 4.4 Current State and Future Challenges -- References -- Chapter 5 Multicomponent and Multimaterials Printing: A Case Study of Embedded Ceramic Sensors in Metallic Pipes -- 5.1 Multicomponent Printing: A Short Review -- 5.2 Multicomponent Printing: A Case Study on Piezoceramic Sensors in Smart Pipes -- 5.2.1 Brief Introduction to AM of Embedded Sensors for Smart Metering -- 5.2.2 Fabrication of the Embedded Piezoceramic Sensor in Metallic Pipes -- 5.2.2.1 Smart Coupling Fabrication Process Using EPBF Technology -- 5.2.2.2 Materials -- 5.2.2.3 Sensor Housing -- 5.2.2.4 Re-poling of PZT -- 5.2.2.5 Impact in Sensing Properties Due to Heat-Treatment Induced By AM Process -- 5.2.2.6 Smart Coupling Component -- 5.2.2.7 Compressive Force Sensing -- 5.2.2.8 Temperature Sensing -- 5.2.3 Impact of the AM and Performance of the Multicomponent Printed Device -- 5.2.3.1 Compressive Force Sensing -- 5.2.3.2 Temperature Sensing
- 5.2.3.3 Crystalline Structure Analysis -- 5.3 Summary and Outlook -- Acknowledgments -- References -- Chapter 6 Tailoring of AM Component Properties via Laser Powder Bed Fusion -- 6.1 Introduction -- 6.2 Machines, Materials, and Sample Preparation -- 6.3 Sample Preparation and Characterization Techniques -- 6.4 Material Qualification and Process Development -- 6.5 Tailoring Grain Size via Adaptive Processing Strategies -- 6.6 Tailoring Material Properties By Using Powder Blends -- 6.7 Tailoring Properties By Using Special Geometries Such As Lattice Structures -- Funding -- Conflicts of Interest -- References -- Chapter 7 3D Printing Challenges and New Concepts for Production of Complex Objects -- 7.1 Introduction -- 7.2 Geometrical Complexity -- 7.3 Material Complexity -- 7.4 Energy Requirements -- 7.5 Promising Metal Deposition Approaches -- 7.6 Multimaterial and Multi-property SLA -- 7.7 Temporal Multiplexing -- 7.8 Resin Formulations with Multiple End-States -- 7.9 Associated Processing Considerations -- 7.10 Bioprinting of Realistic and Vascularized Tissue -- 7.11 Emerging Volumetric Additive Processes -- 7.12 Computation for CAL -- 7.13 Material-Process Interactions in CAL -- 7.14 Current Challenges in CAL -- 7.15 Expanding the Capabilities of CAL -- 7.16 Concluding Remarks and Outlook -- Acknowledgments -- References -- Part C 3D printing of energy devices -- Chapter 8 Current State of 3D Printing Technologies and Materials -- 8.1 3D Printing of Energy Devices -- 8.1.1 Batteries -- 8.1.1.1 3D Printing Structured Electrodes -- 8.1.1.2 3D Printing Solid Electrolytes -- 8.1.1.3 3D Printed Full Batteries -- 8.1.1.4 Conclusion and Outlook -- References -- Chapter 9 Capacitors -- 9.1 Introduction -- 9.2 Capacitors and Their Current Manufacture -- 9.2.1 Capacitor Classifications, Operating Principles, Applications, and Current Manufacture