3D Printing for Energy Applications

This book delivers an insightful and cutting-edge exploration of the applications of 3D printing to the fabrication of complex devices in the energy sector. The book covers aspects related to additive manufacturing of functional materials with applicability in the energy sector. It reviews both the...

Full description

Saved in:
Bibliographic Details
Main Authors Tarancón, Albert, Esposito, Vincenzo
Format eBook Book
LanguageEnglish
Published Hoboken John Wiley & Sons 2021
John Wiley & Sons, Incorporated
Edition1
Subjects
Online AccessGet full text
ISBN1119560756
9781119560753
DOI10.1002/9781119560807

Cover

Abstract This book delivers an insightful and cutting-edge exploration of the applications of 3D printing to the fabrication of complex devices in the energy sector. The book covers aspects related to additive manufacturing of functional materials with applicability in the energy sector. It reviews both the technology of printable materials and 3D printing strategies itself, and its use in energy devices or systems. Split into three sections, the book covers the 3D printing of functional materials before delving into the 3D printing of energy devices. It closes with printing challenges in the production of complex objects. It also presents an interesting perspective on the future of 3D printing of complex devices.
AbstractList This book delivers an insightful and cutting-edge exploration of the applications of 3D printing to the fabrication of complex devices in the energy sector. The book covers aspects related to additive manufacturing of functional materials with applicability in the energy sector. It reviews both the technology of printable materials and 3D printing strategies itself, and its use in energy devices or systems. Split into three sections, the book covers the 3D printing of functional materials before delving into the 3D printing of energy devices. It closes with printing challenges in the production of complex objects. It also presents an interesting perspective on the future of 3D printing of complex devices.
Author Esposito, Vincenzo
Tarancón, Albert
Author_xml – sequence: 1
  fullname: Tarancón, Albert
– sequence: 2
  fullname: Esposito, Vincenzo
BackLink https://cir.nii.ac.jp/crid/1130289596859083300$$DView record in CiNii
BookMark eNotkDtPwzAUhY14CFo6skcCxFS4vrZjeyxpeEiV6IBYIydxkGmwgxOQ-u9J1S7n6uh--oYzISc-eEvIFYV7CoAPWipKqRYpKJBHZLbrAhllEiE9JpPDU4r0bCzIKedCoDons77_gtHAuZISLsg1Wybr6Pzg_GfShJjk3sbPbbLoutZVZnDB95fktDFtb2eHOyUfT_l79jJfvT2_ZovV3FDOEOdoGKYlaMMZU1aWBoQynJZlzQXqGhsGFaeIHBW1SlnKsQHgKKVSoi5rNiV3e3EXw8-v7YfCliFsKuuHaNoif8xSAZppPZI3e9I7V1Rul5QyQKWFTpXQoBgDGLHbPbbx4c-2RRfdt4nbYmctNt1ynS_GMTL2D69vXFk
ContentType eBook
Book
Copyright 2021
Copyright_xml – notice: 2021
DBID RYH
DEWEY 621.988
DOI 10.1002/9781119560807
DatabaseName CiNii Complete
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781523137206
1523137207
9781119560760
1119560764
Edition 1
ExternalDocumentID EBC6509399
BC09887261
book_kpDPEA000C
GroupedDBID -U1
38.
3XM
AABBV
ABHAM
ADBMJ
AETLP
AJAFW
ALMA_UNASSIGNED_HOLDINGS
BBABE
CMZ
CZZ
DYXOI
ERSLE
IHRAH
JFSCD
JHQRR
KJBCJ
KT4
LQKAK
LWYJN
LYPXV
TD3
W1A
WIIVT
YPLAZ
ZEEST
RYH
ID FETCH-LOGICAL-a14322-2a326b09a4338e7ba058a41bbd4529d2f30c41224281e88e142f004277885dbd3
IEDL.DBID KT4
ISBN 1119560756
9781119560753
IngestDate Sat May 31 00:10:30 EDT 2025
Fri Jun 27 00:56:49 EDT 2025
Sat Nov 23 14:04:11 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
LCCallNum_Ident TS171.95 .A12 2021
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a14322-2a326b09a4338e7ba058a41bbd4529d2f30c41224281e88e142f004277885dbd3
Notes Includes bibliographical references and index
OCLC 1241445528
OpenAccessLink https://www.gbv.de/dms/tib-ub-hannover/1725629496.pdf
PQID EBC6509399
PageCount 402
ParticipantIDs proquest_ebookcentral_EBC6509399
nii_cinii_1130289596859083300
knovel_primary_book_kpDPEA000C
PublicationCentury 2000
PublicationDate 2021
c2021
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: Newark
PublicationYear 2021
Publisher John Wiley & Sons
John Wiley & Sons, Incorporated
Publisher_xml – name: John Wiley & Sons
– name: John Wiley & Sons, Incorporated
SSID ssj0002448770
ssib055579449
Score 2.2730181
Snippet This book delivers an insightful and cutting-edge exploration of the applications of 3D printing to the fabrication of complex devices in the energy sector....
SourceID proquest
nii
knovel
SourceType Publisher
SubjectTerms General Engineering & Project Administration
Manufacturing Engineering
Materials
Materials & Manufacturing Processes
Three-dimensional printing
TableOfContents Title Page Introduction to 3D Printing Technologies Table of Contents 1. Additive Manufacturing of Functional Metals 2. Additive Manufacturing of Functional Ceramics 3. 3D Printing of Functional Composites with Strain Sensing and Self-Heating Capabilities 4. Computational Design of Complex 3D Printed Objects 5. Multicomponent and Multimaterials Printing 6. Tailoring of AM Component Properties via Laser Powder Bed Fusion 7. 3D Printing Challenges and New Concepts for Production of Complex Objects 8. Current State of 3D Printing Technologies and Materials 9. Capacitors 10. 3D-Printing for Solar Cells 11. 3D Printing of Fuel Cells and Electrolyzers 12. DED for Repair and Manufacture of Turbomachinery Components 13. Thermoelectrics 14. Carbon Capture, Usage, and Storage Index
11.4 3D Printing of Bio-Fuel Cells Technology -- 11.5 Conclusions and Outlook -- References -- Chapter 12 DED for Repair and Manufacture of Turbomachinery Components -- 12.1 Introduction -- 12.2 DED Based Repair of Turbomachinery Components -- 12.2.1 DED Process -- 12.2.2 Work Environment -- 12.2.3 Process Chain for the Repair of Turbine Blades -- 12.2.3.1 Step 1: "Machining &amp -- Preparation" -- 12.2.3.2 Step 2: "Reverse Engineering" -- 12.2.3.3 Step 3: "Generation of Tool Paths" -- 12.2.3.4 Step 4: "DED Process" -- 12.2.3.5 Step 5: "Adaptive Machining" -- 12.3 DED Based Hybrid Manufacturing of New Components -- 12.3.1 Hybrid Additive Manufacturing -- 12.3.2 Turbocharger Nozzle Ring -- 12.3.3 Hybrid Production Cell -- 12.3.4 Process Chain for Hybrid Additive Manufacturing of Nozzle Rings -- 12.3.4.1 Step 1: "Choice of DED Strategy" -- 12.3.4.2 Step 2: "DED Process" -- 12.3.4.3 Step 3: "Optical Metrology" -- 12.3.4.4 Step 4: "Adaptive Milling" -- 12.3.4.5 Step 5: "Joining of Top Ring" -- 12.4 Summary -- Acknowledgments -- References -- Chapter 13 Thermoelectrics -- 13.1 Introduction -- 13.2 Additive Manufacturing Techniques of Thermoelectric Materials -- 13.2.1 Extrusion-Based Additive Manufacturing Process -- 13.2.2 Fused Deposition Modeling (FDM) Technique -- 13.2.3 Stereolithography Apparatus (SLA) Process -- 13.2.4 Selective Laser Sintering (SLS) Process -- 13.2.5 Summary and Outlook -- Acknowledgements -- References -- Chapter 14 Carbon Capture, Usage, and Storage -- 14.1 Introduction -- 14.2 Can 3D Printing Be Used to Fabricate a CO2 Capture Process at Scale? -- 14.3 A Brief Note on 3D Printing and CO2 at Smaller Scales &amp -- Research Efforts -- 14.4 Conclusions -- References -- Index -- EULA
Intro -- Title Page -- Copyright Page -- Contents -- Contributors -- Introduction to 3D Printing Technologies -- Part 1 3D printing of functional materials -- Chapter 1 Additive Manufacturing of Functional Metals -- 1.1 Introduction -- 1.1.1 Industrial Application of Metal AM in the Energy Sector -- 1.1.2 Geometrical Gradients in AM -- 1.1.3 Material Gradients in AM -- 1.2 Powder Bed Fusion AM -- 1.2.1 Geometric Gradients in PBF -- 1.2.2 Material Gradients in PBF -- 1.3 Direct Material Deposition -- 1.3.1 Powder and Wire Feedstock for Near-Net-Shape AM -- 1.3.2 Functional Material Gradients in DED -- 1.4 Solid-State Additive Manufacturing -- 1.5 Hybrid AM Through Green Body Sintering -- 1.5.1 Common AM Technologies for Green Body Manufacturing -- 1.5.2 CAD Design and Shrinkage Compensation -- 1.5.3 Additive Manufacture -- 1.5.4 Debinding and Sintering -- 1.5.5 Functionally Graded Components in Sintered Components -- 1.6 Conclusions -- Acknowledgment -- References -- Chapter 2 Additive Manufacturing of Functional Ceramics -- 2.1 Introduction -- 2.1.1 Why 3D Printing of Technical Ceramics? -- 2.1.2 Materials and Applications -- 2.2 Ceramics 3D Printing Technologies -- 2.2.1 Lamination Object Modeling (LOM) -- 2.2.2 Ceramics Extrusion -- 2.2.2.1 Robocasting/Direct Ink Writing -- 2.2.2.2 Fused Deposition of Ceramics -- 2.2.3 Photopolymerization -- 2.2.4 Laser-Based Technologies -- 2.2.5 Jetting -- References -- Chapter 3 3D Printing of Functional Composites with Strain Sensing and Self-Heating Capabilities -- 3.1 Introduction -- 3.2 Carbon Nanotube Reinforced Functional Polymer Nanocomposites -- 3.2.1 Strain Sensing of CNT Reinforced Polymer Nanocomposites -- 3.2.2 Resistive Heating of CNT Reinforced Polymer Nanocomposites -- 3.3 Printing Strategies -- 3.3.1 Spray Deposition Modeling and Fused Deposition Modeling
9.2.1.1 Electrostatic Capacitors -- 9.2.1.2 Electrolytic Capacitors -- 9.2.1.3 Electrochemical Capacitors -- 9.2.2 Capacitor Components: Function and Requirements -- 9.2.3 Performance -- 9.2.4 The Challenge of Manufacturing Capacitors -- 9.3 The Promise of Additive Manufacturing -- 9.4 Additive Manufacturing Technologies: Considerations for Capacitor Fabrication -- 9.4.1 AM Process Categories -- 9.4.1.1 Material Extrusion - Fused Filament Fabrication -- 9.4.1.2 Material Extrusion - Direct Ink Writing -- 9.4.1.3 Vat Polymerization -- 9.4.1.4 Powder Bed Fusion -- 9.4.1.5 Material Jetting -- 9.4.1.6 Binder Jetting -- 9.4.2 Multi-technology or Hybrid Printing -- 9.4.3 Complete Capacitor Devices Fabricatedby Additive Manufacturing -- 9.5 Summary and Outlook -- References -- Chapter 10 3D-Printing for Solar Cells -- 10.1 Introduction -- 10.2 Examples of 3D-Printing for PV -- 10.3 Geometric Light Management -- 10.3.1 Background -- 10.3.2 Optical Model for External Light Trapping -- 10.3.3 Design and 3D-Printing of the External Light Trap -- 10.3.4 Characterization -- 10.4 Conclusions -- References -- Chapter 11 3D Printing of Fuel Cells and Electrolyzers -- 11.1 Introduction -- 11.2 3D Printing of Solid Oxide Cells Technology -- 11.2.1 Solid Oxide Fuel Cells -- 11.2.1.1 SOFC Electrolyte -- 11.2.1.2 SOFC Electrodes -- 11.2.2 Solid Oxide Electrolysis Cells -- 11.2.3 SOC Stacks and Components -- 11.3 3D Printing of Polymer Exchange Membranes Cells Technology -- 11.3.1 Polymeric Exchange Membrane Fuel Cells -- 11.3.1.1 PEMFC Electrolyte -- 11.3.1.2 PEMFC Catalysts Layer -- 11.3.1.3 PEMFC Gas Diffusion Layer -- 11.3.1.4 PEMFC Bipolar Plates and Flow Fields -- 11.3.2 Polymer Exchange Membrane Electrolysis Cells -- 11.3.2.1 PEMEC Liquid Gas Diffusion Layer -- 11.3.2.2 PEMEC Bipolar Plates and Flow Fields -- 11.3.2.3 Fully Printed PEMEC
3.3.2 Printing of Highly Flexible Carbon Nanotube/Polydimethylsilicone Strain Sensor -- 3.3.3 Printing of Carbon Nanotube/Shape Memory Polymer Nanocomposites -- 3.4 Strain Sensing of Printed Nanocomposites -- 3.5 Electric Heating Performance Analysis -- 3.6 Electrical Actuation of the CNT/SMP Nanocomposites -- 3.7 Conclusions -- References -- Part B 3D printing challenges for production of complex objects -- Chapter 4 Computational Design of Complex 3D Printed Objects -- 4.1 Introduction -- 4.2 Dedicated Computational Design for 3D Printing -- 4.2.1 Overhang Angle Control Approaches -- 4.2.1.1 Local Angle Control -- 4.2.1.2 Physics-Based Constraints -- 4.2.1.3 Simplified Printing Process -- 4.2.2 Design Scenarios -- 4.3 Case Study: Computational Design of a 3D-Printed Flow Manifold -- 4.3.1 Fluid Flow TO -- 4.3.2 Front Propagation-Based 3D Printing Constraint -- 4.3.3 Fluid TO with 3D Printing Constraint -- 4.4 Current State and Future Challenges -- References -- Chapter 5 Multicomponent and Multimaterials Printing: A Case Study of Embedded Ceramic Sensors in Metallic Pipes -- 5.1 Multicomponent Printing: A Short Review -- 5.2 Multicomponent Printing: A Case Study on Piezoceramic Sensors in Smart Pipes -- 5.2.1 Brief Introduction to AM of Embedded Sensors for Smart Metering -- 5.2.2 Fabrication of the Embedded Piezoceramic Sensor in Metallic Pipes -- 5.2.2.1 Smart Coupling Fabrication Process Using EPBF Technology -- 5.2.2.2 Materials -- 5.2.2.3 Sensor Housing -- 5.2.2.4 Re-poling of PZT -- 5.2.2.5 Impact in Sensing Properties Due to Heat-Treatment Induced By AM Process -- 5.2.2.6 Smart Coupling Component -- 5.2.2.7 Compressive Force Sensing -- 5.2.2.8 Temperature Sensing -- 5.2.3 Impact of the AM and Performance of the Multicomponent Printed Device -- 5.2.3.1 Compressive Force Sensing -- 5.2.3.2 Temperature Sensing
5.2.3.3 Crystalline Structure Analysis -- 5.3 Summary and Outlook -- Acknowledgments -- References -- Chapter 6 Tailoring of AM Component Properties via Laser Powder Bed Fusion -- 6.1 Introduction -- 6.2 Machines, Materials, and Sample Preparation -- 6.3 Sample Preparation and Characterization Techniques -- 6.4 Material Qualification and Process Development -- 6.5 Tailoring Grain Size via Adaptive Processing Strategies -- 6.6 Tailoring Material Properties By Using Powder Blends -- 6.7 Tailoring Properties By Using Special Geometries Such As Lattice Structures -- Funding -- Conflicts of Interest -- References -- Chapter 7 3D Printing Challenges and New Concepts for Production of Complex Objects -- 7.1 Introduction -- 7.2 Geometrical Complexity -- 7.3 Material Complexity -- 7.4 Energy Requirements -- 7.5 Promising Metal Deposition Approaches -- 7.6 Multimaterial and Multi-property SLA -- 7.7 Temporal Multiplexing -- 7.8 Resin Formulations with Multiple End-States -- 7.9 Associated Processing Considerations -- 7.10 Bioprinting of Realistic and Vascularized Tissue -- 7.11 Emerging Volumetric Additive Processes -- 7.12 Computation for CAL -- 7.13 Material-Process Interactions in CAL -- 7.14 Current Challenges in CAL -- 7.15 Expanding the Capabilities of CAL -- 7.16 Concluding Remarks and Outlook -- Acknowledgments -- References -- Part C 3D printing of energy devices -- Chapter 8 Current State of 3D Printing Technologies and Materials -- 8.1 3D Printing of Energy Devices -- 8.1.1 Batteries -- 8.1.1.1 3D Printing Structured Electrodes -- 8.1.1.2 3D Printing Solid Electrolytes -- 8.1.1.3 3D Printed Full Batteries -- 8.1.1.4 Conclusion and Outlook -- References -- Chapter 9 Capacitors -- 9.1 Introduction -- 9.2 Capacitors and Their Current Manufacture -- 9.2.1 Capacitor Classifications, Operating Principles, Applications, and Current Manufacture
Title 3D Printing for Energy Applications
URI https://app.knovel.com/hotlink/toc/id:kpDPEA000C/printing-energy-applications/printing-energy-applications?kpromoter=Summon
https://cir.nii.ac.jp/crid/1130289596859083300
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=6509399
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwxV3NS8MwFH_4ddCL3zh1o6DXurRJt9SL6JyIonhQES8laVIck25I50H_Ff9Y30s75wfo0UugTUlJ8pL3_XsAu8wIm2nBfCkz5QurU1_hNejHMjZGRUpITXbIi8vW6Y04u4vupuB1nAtDxa36-eDZPrpr-mFQkCOzWQzSZs_s94fHV91DPMUdQgl0pRR863Lk_C_-3t86D_pDF-iGhFIamqZhFoUOTqf6_Fp8GGiQ78l2m7nqQpRUh7y1VWFEjZ95BdqJHzcn7yWVpp0rJ4EcK-_1ftzzjnmdLMLbeNplzEp_b1TovfTlGyLkP63LEsxaSrhYhimbr8DCJ4DEVdjhx95VNZqH4rXXdSN6h59GXIPbk-5159SvyjogFQjSfUOFMqNmsRKoH9u2ViySSgRaG_ICmzDjLBXk8QtlYKW0gQgzVxME1fXIaMPXYSYf5HYDPM4tM4HNTJgiwSkdR1nIoywz5N_VUVyDRrlqybAE70hId0km61WDOm5QkvaoDciLK-MobkkqBc85YzXwxluXOPd1FTObdI86BD6I8t3mX__YgvmQImGc4WYbZoqnka2jKFPoBkz7NwG2nYv7hiO_d-Cm91o
linkProvider Knovel
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=3D+printing+for+energy+applications&rft.au=Taranc%C3%B3n%2C+Albert&rft.au=Esposito%2C+Vincenzo&rft.date=2021-01-01&rft.pub=John+Wiley+%26+Sons&rft.isbn=9781119560753&rft_id=info:doi/10.1002%2F9781119560807&rft.externalDocID=BC09887261
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcontent.knovel.com%2Fcontent%2FThumbs%2Fthumb13215.gif