Modeling Decisions for Artificial Intelligence 17th International Conference, MDAI 2020, Sant Cugat, Spain, September 2-4, 2020, Proceedings

This book constitutes the refereed proceedings of the 17th International Conference on Modeling Decisions for Artificial Intelligence, MDAI 2020, held in Sant Cugat, Spain, in September 2020.*The 24 papers presented in this volume were carefully reviewed and selected from 46 submissions. They discus...

Full description

Saved in:
Bibliographic Details
Main Authors Torra, Vicenç, Narukawa, Yasuo, Nin, Jordi, Agell, Núria
Format eBook
LanguageEnglish
Published Netherlands Springer Nature 2020
Springer International Publishing AG
Springer
Edition1
SeriesLecture Notes in Computer Science: Lecture Notes in Artificial Intelligence
Subjects
Online AccessGet full text
ISBN3030575241
9783030575243
9783030575236
3030575233

Cover

Abstract This book constitutes the refereed proceedings of the 17th International Conference on Modeling Decisions for Artificial Intelligence, MDAI 2020, held in Sant Cugat, Spain, in September 2020.*The 24 papers presented in this volume were carefully reviewed and selected from 46 submissions. They discuss different facets of decision processes in a broad sense and present research in data science, data privacy, aggregation functions, human decision making, graphs and social networks, and recommendation and search. The papers are organized in the following topical sections: aggregation operators and decision making, and data science and data mining.* The conference was canceled due to the COVID-19 pandemic.
AbstractList This book constitutes the refereed proceedings of the 17th International Conference on Modeling Decisions for Artificial Intelligence, MDAI 2020, held in Sant Cugat, Spain, in September 2020.*The 24 papers presented in this volume were carefully reviewed and selected from 46 submissions. They discuss different facets of decision processes in a broad sense and present research in data science, data privacy, aggregation functions, human decision making, graphs and social networks, and recommendation and search. The papers are organized in the following topical sections: aggregation operators and decision making, and data science and data mining.* The conference was canceled due to the COVID-19 pandemic.
Author Torra, Vicenç
Narukawa, Yasuo
Agell, Núria
Nin, Jordi
Author_xml – sequence: 1
  fullname: Torra, Vicenç
– sequence: 2
  fullname: Narukawa, Yasuo
– sequence: 3
  fullname: Nin, Jordi
– sequence: 4
  fullname: Agell, Núria
BookMark eNpNz8tOwzAQBVAjHoKU_kPEBrEI8vgRJ8tSClQqYoPYRo4zSU2NXeIAv09EEGI1mtHRHd2EHPng8YAknHIqlWQCDv8vJyQBKDlwEFScknmMr5RSJpiQIM7I9WNo0FnfpbdobLTBx7QNfbroB9taY7VL135A52yH3uA5OW61izj_nTPycrd6Xj5km6f79XKxyfT4RqosN6ZsGZaGN6JFzRWVmjGBoPM6h4ZTkauaqRrMeIW8bI1pEOuaccBSIeMzcjUF67jDr7gNbojVp8M6hF2sSlX8NeSjvZzsvg_vHxiH6ocZ9EOvXbW6WeYcikLSUV5M0uiox9a2egs-dL3eb2MlBQNgkn8DRH9ffA
ContentType eBook
DBID I4C
DEWEY 006
DatabaseName Casalini Torrossa eBooks Institutional Catalogue
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 3030575241
9783030575243
Edition 1
1st ed. 2020.
Editor Torra, Vicenç
Narukawa, Yasuo
Agell, Núria
Nin, Jordi
Editor_xml – sequence: 1
  fullname: Agell, Núria
– sequence: 2
  fullname: Narukawa, Yasuo
– sequence: 3
  fullname: Nin, Jordi
– sequence: 4
  fullname: Torra, Vicenç
ExternalDocumentID 9783030575243
EBC6318850
5421125
GroupedDBID 38.
AABBV
ABZKH
ACGCR
AEDXK
AEJNW
AEKFX
AIYYB
ALMA_UNASSIGNED_HOLDINGS
APEJL
AVCSZ
AZTDL
BBABE
CYNQG
CZZ
DACMV
ESBCR
I4C
IEZ
OAOFD
OPOMJ
SBO
TPJZQ
TSXQS
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
AEHEY
AEJLV
ID FETCH-LOGICAL-a14057-6cc9f2e9c3d4fea3705a224e1a6b61d30467b27b1c224169fccdeebb231e97e23
ISBN 3030575241
9783030575243
9783030575236
3030575233
IngestDate Fri Nov 08 03:53:35 EST 2024
Fri Aug 29 09:50:12 EDT 2025
Tue Nov 14 22:57:01 EST 2023
IsPeerReviewed false
IsScholarly false
LCCallNum_Ident Q
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a14057-6cc9f2e9c3d4fea3705a224e1a6b61d30467b27b1c224169fccdeebb231e97e23
OCLC 1193131404
PQID EBC6318850
PageCount 308
ParticipantIDs askewsholts_vlebooks_9783030575243
proquest_ebookcentral_EBC6318850
casalini_monographs_5421125
PublicationCentury 2000
PublicationDate 2020
2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: Cham
PublicationSeriesTitle Lecture Notes in Computer Science: Lecture Notes in Artificial Intelligence
PublicationYear 2020
Publisher Springer Nature
Springer International Publishing AG
Springer
Publisher_xml – name: Springer Nature
– name: Springer International Publishing AG
– name: Springer
SSID ssj0002424514
Score 2.144954
Snippet This book constitutes the refereed proceedings of the 17th International Conference on Modeling Decisions for Artificial Intelligence, MDAI 2020, held in Sant...
SourceID askewsholts
proquest
casalini
SourceType Aggregation Database
Publisher
SubjectTerms Artificial intelligence-Mathematical models-Congresses
Special computer methods
Subtitle 17th International Conference, MDAI 2020, Sant Cugat, Spain, September 2-4, 2020, Proceedings
TableOfContents 3.1 Customers' Reviews Unit -- 3.2 Domain Analysis Unit -- 3.3 Ranking Unit -- 4 Experiments and Results -- 4.1 Data -- 4.2 Case Study -- 4.3 Results -- 5 Conclusion and Future Work -- References -- Efficient Detection of Byzantine Attacks in Federated Learning Using Last Layer Biases -- 1 Introduction -- 2 Background -- 2.1 Federated Averaging -- 2.2 Bias in Neural Networks -- 2.3 Geometric Median -- 3 Efficient Detection of Byzantine Attacks -- 4 Experimental Results -- 5 Conclusions and Future Work -- References -- Multi-object Tracking Combines Motion and Visual Information -- 1 Introduction -- 2 Related Work -- 2.1 Single Object Tracking -- 2.2 Multiple Object Tracking -- 2.3 Appearance Models -- 2.4 Motion Models -- 3 The Proposed KV-IOU Tracker -- 3.1 Detection Matching -- 3.2 Tracker Extension -- 3.3 Backward Tracking -- 4 Experiments -- 4.1 Implementation Details -- 4.2 Benchmark Evaluations -- 5 Conclusions -- References -- Classifying Candidate Axioms via Dimensionality Reduction Techniques -- 1 Introduction -- 2 The Hypothesis Language -- 3 Formula Translation -- 4 Learning ARI -- 5 Conclusions -- References -- Sampling Unknown Decision Functions to Build Classifier Copies -- 1 Introduction -- 2 Related Work -- 3 Preliminaries -- 4 Methods -- 4.1 Boundary Sampling -- 4.2 Fast Bayesian Sampling -- 5 Experiments -- 5.1 Evaluation Metrics -- 5.2 Intuition -- 6 Discussion of Results -- 6.1 Reference Set Evaluation -- 6.2 Algorithm Evaluation -- 6.3 Computational Cost -- 7 Conclusions and Future Work -- References -- Towards Analogy-Based Explanations in Machine Learning -- 1 Introduction -- 2 Interpretable Machine Learning -- 3 Analogy-Based Learning -- 3.1 Analogical Proportions -- 3.2 Analogical Prediction -- 3.3 Feature Selection -- 4 Analogy-Based Explanation -- 4.1 Explaining Class Predictions -- 4.2 Explaining Preference Predictions
Intro -- Preface -- Organization -- Contents -- I Aggregation Operators and Decision Making -- A Characterization of Belief Merging Operators in the Regular Horn Fragment of Signed Logic -- 1 Introduction -- 2 Preliminaries -- 3 Models of Signed Regular Horn Formulas -- 4 Logical Postulates for Signed Horn Merging -- 5 Future Work -- References -- Bivariate Risk Measures and Stochastic Orders -- 1 Introduction -- 2 Bivariate Value-at-Risks and Bivariate Average Value-at-Risks -- 3 Bivariate Value-at-Risks and Stochastic Dominances -- 4 Second Stochastic Dominances and Bivariate Average Value-at-risk Order -- 5 Conclusion -- References -- Stochastic Orders on Two-Dimensional Space: Application to Cross Entropy -- 1 Introduction -- 2 Stochastic Order in 1d -- 3 Stochastic Order in 2d -- 4 Comonotonic and Countermonotonic sequences -- 5 Conclusions and Future Work -- References -- Modeling Decisions in AI: Re-thinking Linda in Terms of Coherent Lower and Upper Conditional Previsions -- 1 Introduction -- 2 Representation of Partial Knowledge by Means of Coherent Upper and Lower Conditional Probabilities -- 2.1 Partial Preference Orderings and Equivalence Between Random Variables Represented, Respectively, by Lower and Upper Conditional Previsions -- 3 Linda's Problem Revisited -- 4 Knowledge Updating -- 5 Conclusions -- References -- Ensemble Learning, Social Choice and Collective Intelligence -- 1 Introduction -- 2 Methods -- 2.1 Background -- 2.2 Experimental Design -- 3 Results -- 4 Discussion -- 5 Conclusion -- References -- An Unsupervised Capacity Identification Approach Based on Sobol' Indices -- 1 Introduction -- 2 Theoretical Background -- 2.1 Multicriteria Decision Making and the Multilinear Model -- 2.2 Interaction Indices and 2-Additive Capacity -- 2.3 Sobol' Indices -- 3 The Proposed Unsupervised Approach for Capacity Identification
4 Numerical Experiments -- 4.1 Application of Our Proposal in the Illustrative Example -- 4.2 Experiments Varying the Number of Alternatives and the Degree of the Correlation -- 5 Conclusions -- References -- Probabilistic Measures and Integrals: How to Aggregate Imprecise Data -- 1 Introduction -- 2 Basic Ingredients -- 3 Probabilistic Integral in Action -- 3.1 Probabilistic Integral - Properties -- 3.2 Probabilistic Integral - Convergence Theorems -- 3.3 Probabilistic Integral - Rounding of Reals -- 4 Concluding Remarks -- References -- Distorted Probabilities and Bayesian Confirmation Measures -- 1 Introduction -- 2 Bayesian Confirmation Measures -- 3 Distorted Probabilities and Bayesian Confirmation Measures -- 4 Conclusions -- References -- Constructive k-Additive Measure and Decreasing Convergence Theorems -- 1 Introduction -- 2 Constructive k-Additive Measure -- 3 Set Operations -- 4 Monotone Decreasing Convergence Theorems -- 5 Conclusion -- References -- I Data science and Data Mining -- Generalization Property of Fuzzy Classification Function for Tsallis Entropy-Regularization of Bezdek-Type Fuzzy C-Means Clustering -- 1 Introduction -- 2 Preliminaries -- 2.1 Entropy -- 2.2 Some Conventional Fuzzy Clustering Methods -- 2.3 Fuzzy Classification Function (FCF) -- 3 Proposed Method -- 3.1 Basic Concepts -- 3.2 Algorithm -- 4 Numerical Experiment -- 5 Summary -- References -- Nonparametric Bayesian Nonnegative Matrix Factorization -- 1 Introduction -- 2 Nonparametric Nonnegative Matrix Factorization -- 2.1 Model Specification of NPNMF -- 2.2 Model Inference of NPNMF -- 3 Results -- 3.1 Results on Synthetic Data -- 3.2 Classification of Motor Imagery EEG -- 4 Conclusions -- References -- SentiRank: A System to Integrate Aspect-Based Sentiment Analysis and Multi-criteria Decision Support -- 1 Introduction -- 2 Related Work -- 3 Methodology
5 Conclusion and Future Work -- References -- An Improved Bi-level Multi-objective Evolutionary Algorithm for the Production-Distribution Planning System -- 1 Introduction -- 2 Bi-level Programming: Basic Definitions -- 3 Case Study on Production-Distribution Systems in Supply Chain Management -- 4 A-BLEMO for the Bi-level Multi-objective Production Distribution Planning System -- 4.1 Chromosome Representation -- 4.2 Upper Level Related Components -- 4.3 Lower Level Related Components -- 5 Experimental Study -- 5.1 Parameter Setting -- 5.2 Statistical Analysis -- 5.3 Experimental Results -- 6 Conclusion -- References -- Modifying the Symbolic Aggregate Approximation Method to Capture Segment Trend Information -- 1 Introduction -- 2 Background -- 3 The Proposed Method -- 4 Experiments -- 5 Conclusion and Future Work -- References -- Efficiently Mining Gapped and Window Constraint Frequent Sequential Patterns -- 1 Introduction -- 2 Related Works -- 3 PrefixSpan Under Constraints -- 3.1 Formal Definitions -- 3.2 WinCopper Algorithm -- 4 Experiments -- 5 Conclusions -- References -- Aggregating News Reporting Sentiment by Means of Hesitant Linguistic Terms -- 1 Introduction -- 2 Preliminaries -- 3 The Proposed Approach to Detecting Contrasting Sentiment -- 4 A Real Case Example -- 5 Conclusion and Future Research -- References -- Decision Trees as a Tool for Data Analysis. Elections in Barcelona: A Case Study -- 1 Introduction -- 2 Decision Trees -- 3 A Case Study: An Analysis of the Electoral Results in Barcelona -- 3.1 Administrative Organization of Barcelona -- 3.2 Electoral Organization of Barcelona and Political Context -- 3.3 The Database -- 4 Experiments -- 5 Conclusions -- References -- Explaining Misclassification and Attacks in Deep Learning via Random Forests -- 1 Introduction -- 2 Requirements and Risks of Surrogate Models for Explanation
3 Outliers and Attacks on Data Sets -- 4 Random Forest-Based Surrogate Model -- 5 Experimental Results -- 5.1 Experiments on Synthetic Numerical Data -- 5.2 Experiments on Real Numerical Data -- 5.3 Experiments on Real Categorical Data -- 6 Conclusions and Future Research -- References -- Fair-MDAV: An Algorithm for Fair Privacy by Microaggregation -- 1 Introduction -- 1.1 Roadmap -- 2 Related Work on Integrated Privacy and Fairness -- 2.1 Fairness Related Work and Definitions -- 2.2 Privacy Related Work and Definitions -- 3 Fair-MDAV -- 3.1 Toy Example -- 4 Experimental Framework -- 4.1 Data -- 4.2 Experiments -- 5 Conclusions and Future Work -- References -- Author Index
Title Modeling Decisions for Artificial Intelligence
URI http://digital.casalini.it/9783030575243
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=6318850
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9783030575243
Volume 12256
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60XvTiG-uLIOJFIt1NstscW61W0Z5qqaewu9mKKFWbVsFf78w2L6sgegntpk1gvmWeO_MRckiZiA3V1GUxrbu-hJg15MK4RtBACdzWNWxOvunw9q1_1Q_6BUmr7S4ZqxP98WNfyX9QhTXAFbtk_4Bs_lBYgM-AL1wBYbjOOL_515R7CflrMMg_Syly7FQFzLQ_pBMhLkujNotM8siyCh33QDsMbYk8t0IdOZo8ynd7-04mk-eiYDHt3oAg9SHfHffZUWp8SLMxPaqcZw9YbSZ7kGUPZ_KPpRRY4-JLxOmhghAQvfIvKhS0wsxAa2siW81TDkqjHtSOXl5dpPrCknjKezJP5oUApbTQaF1d9_LEGParBJaOK3-XN52UVLx7iSzJ5BGsAFiIcYIuhUwkdpJ-s6jWTeiukAWDvSOrZM4M18hyxpjhpAp0nZxkwDk5cA4A5xTAOWXgNkjvvNU9bbspY4UrKXq-Ltc6HDATai_2B0Z6ohZIcJIMlVxxGmMZWigmFNXoOvFwoHVsjFLgZZtQGOZtksrweWi2iAPLWpnYA4vk-1L6dS2YVAEb1IVRjKsqOSjJIHp7stX1JCoJyveqZCcTTQQin05BT6LAh7ifBVXiZNKK7L_TA8FRgdv27z_ZIYvFztollfFoYvbAUxur_RTbT3t4P8E
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Modeling+Decisions+for+Artificial+Intelligence&rft.au=Torra%2C+Vicen%C3%A7&rft.au=Narukawa%2C+Yasuo&rft.au=Nin%2C+Jordi&rft.au=Agell%2C+N%C3%BAria&rft.date=2020-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783030575236&rft.volume=12256&rft.externalDocID=EBC6318850
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97830305%2F9783030575243.jpg