Advances in Computational Intelligence 15th International Work-Conference on Artificial Neural Networks, IWANN 2019, Gran Canaria, Spain, June 12-14, 2019, Proceedings, Part I

Saved in:
Bibliographic Details
Main Authors Rojas, Ignacio, Joya, Gonzalo, Catala, Andreu
Format eBook
LanguageEnglish
Published Cham Springer International Publishing AG 2019
Edition1
Subjects
Online AccessGet full text
ISBN3030205207
9783030205201

Cover

Table of Contents:
  • Intro -- Preface -- Organization -- Contents - Part I -- Contents - Part II -- Machine Learning in Weather Observation and Forecasting -- A Deeper Look into 'Deep Learning of Aftershock Patterns Following Large Earthquakes': Illustrating First Principles in Neural Network Physical Interpretability -- Abstract -- 1 Introduction -- 2 Artificial Neural Networks in Statistical Seismology -- 2.1 Literature Survey -- 2.2 The DeVries18 Study -- 3 Applying First Principles to Neural Network Interpretability -- 3.1 Was High Abstraction Required to Predict Aftershock Patterns? -- 3.2 Were Stress Metrics the Most Pertinent Physical Parameters? -- 4 Conclusions -- References -- Boosting Wavelet Neural Networks Using Evolutionary Algorithms for Short-Term Wind Speed Time Series Forecasting -- Abstract -- 1 Introduction -- 2 Structure of the Wavelet Neural Network -- 2.1 The Framework of the Network -- 2.2 Ridge Type Wavelet Basis Function -- 2.3 Training of the Network -- 3 Network Training -- 3.1 Evolutionary Algorithms -- 3.2 Coordinate Dictionary Search Optimization (CDSO) Algorithm -- 4 Case Study - Wind Speed Forecasting -- 4.1 The Model -- 4.2 Model Performance -- 5 Conclusion -- Acknowledgments -- References -- An Approach to Rain Detection Using Sobel Image Pre-processing and Convolutional Neuronal Networks -- Abstract -- 1 Introduction -- 2 Methods -- 2.1 Dataset -- 2.2 Preprocessing -- 3 Experiments and Results -- 4 Discussion and Future Work -- Acknowledgements -- References -- On the Application of a Recurrent Neural Network for Rainfall Quantification Based on the Received Signal from Microwave Links -- Abstract -- 1 Introduction -- 2 Experimental Setup and Data Processing -- 3 Feature Extraction -- 3.1 Variability of the RSL with Time -- 3.2 Feature Extraction Module -- 4 Rainfall Quantification Using a Recurrent Neural Network
  • A Scalable Long-Horizon Forecasting of Building Electricity Consumption -- 1 Introduction -- 2 Data Pre-processing -- 2.1 Missing Values and Outliers in Power Data -- 2.2 Data Synchronization -- 3 Hybridized Recursive-Direct (HRD) Multi-step Ahead Forecast -- 3.1 Direct Forecast -- 3.2 Recursive Forecast -- 3.3 Hybridized Direct-Recursive (HDR) Forecast -- 4 Buildings' Month Ahead Load Forecasting -- 4.1 Feature Derivation and Selection -- 4.2 HDR Based Month Ahead Forecasting Using ANN and SVR -- 4.3 Results -- 5 Quarter Ahead Load Forecasting -- 5.1 Feature Extraction -- 5.2 HDR Based Quarter Ahead Forecasting Using Linear Regression -- 5.3 Results -- 6 Discussion -- 7 Conclusion -- References -- Long-Term Forecasting of Heterogenous Variables with Automatic Algorithm Selection -- 1 Introduction -- 2 Data Pre-processing -- 2.1 Granger's Causality Test -- 2.2 Data Transformation and Predictor Matrix -- 3 Time Series Modelling Using Machine Learning Algorithms -- 3.1 Artificial Neural Networks -- 3.2 Support Vector Regression -- 3.3 Random Forests -- 4 Real-Time Switch for Automatic Algorithm Selection -- 4.1 Real-Time Switch -- 5 Results and Discussion -- 6 Conclusion -- References -- Automatic Time Series Forecasting with GRNN: A Comparison with Other Models -- 1 Introduction -- 2 Generalized Regression Neural Networks -- 3 Time Series Forecasting with GRNN -- 3.1 Preprocessing -- 3.2 Autoregressive Lags and Number of Neurons -- 3.3 Selecting the Smoothing Parameter -- 3.4 Multi-step Ahead Strategy -- 4 Automatic Time Series Forecasting in R -- 4.1 Computational Intelligence Methods -- 4.2 Statistical Models -- 4.3 A Combination of Methods -- 5 Experimentation -- 6 Conclusions -- References -- Improving Online Handwriting Text/Non-text Classification Accuracy Under Condition of Stroke Context Absence -- 1 Introduction -- 2 Proposed Solution
  • 4 Experiments and Results
  • 5 Experiments and Results -- 6 Conclusions and Future Works -- Acknowledgments -- References -- Ambient Temperature Estimation Using WSN Links and Gaussian Process Regression -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Gaussian Processes for Machine Learning -- 3.2 Experimental Setup -- 4 Experimental Results -- 5 Conclusions -- References -- Computational Intelligence Methods for Time Series -- Voice Command Recognition Using Statistical Signal Processing and SVM -- Abstract -- 1 Introduction -- 2 Command Recognition System -- 2.1 Data Base of Commands -- 2.2 Signal Preprocessing for Feature Extraction -- 2.3 Support Vector Machine Classifier -- 2.4 Numerical Results of Command Recognition -- 3 Speaker Identification Using Developed System -- 3.1 Data Base -- 3.2 Details of System -- 3.3 Results of Experiments -- 4 Conclusions -- References -- Enterprise System Response Time Prediction Using Non-stationary Function Approximations -- 1 Introduction -- 2 Problem Description -- 3 Model Development -- 3.1 Data Preprocessing -- 3.2 New Feature Identification -- 3.3 Modeling Input Forecasts -- 3.4 Prediction Models -- 4 Experimental Results and Discussion -- 5 Conclusions -- References -- Using Artificial Neural Networks for Recovering the Value-of-Travel-Time Distribution -- Abstract -- 1 Introduction -- 2 Methodology -- 2.1 Preliminary -- 2.2 Uncovering Individual VTTs Using ANNs -- 2.3 ANN Development -- 3 Application to Real VTT Data -- 3.1 Training and Simulation -- 3.2 Results -- 4 Cross-validation -- 5 Conclusions and Discussion -- References -- Sparse, Interpretable and Transparent Predictive Model Identification for Healthcare Data Analysis -- Abstract -- 1 Introduction -- 2 Model Representation -- 3 Sparse Dictionary Learning and NARMAX Model Estimation -- 4 Case Studies and Real Applications
  • 3 Evaluation of Our Solution -- 4 Conclusion -- References -- Improving Classification of Ultra-High Energy Cosmic Rays Using Spacial Locality by Means of a Convolutional DNN -- 1 Introduction and Problem Description -- 2 Data Description -- 2.1 Data Preprocessing -- 3 Methodology: Feed-Forward Neural Network (FFNN) and Convolutional Neural Network (CNN) -- 3.1 FFNN -- 3.2 CNN -- 4 Results -- 5 Conclusions -- References -- Model and Feature Aggregation Based Federated Learning for Multi-sensor Time Series Trend Following -- 1 Introduction -- 2 Multi-sensor TSD Trend Following with Model and Feature Aggregation in Federated Learning -- 2.1 Traditional Federated Learning -- 2.2 Federated Learning Based Model and Feature Fusion for Multi-sensor TSD -- 2.3 Global Aggregated Feature Based Trend Following of TSD -- 3 Experiments and Analysis -- 3.1 Settings for Local Feature Extraction -- 3.2 Settings for Feature Aggregation and Feature Based Trend Following -- 3.3 Experimental Performance -- 4 Conclusions -- References -- Robust Echo State Network for Recursive System Identification -- 1 Introduction -- 2 Fundamentals of the Echo State Network -- 2.1 Recursive Algorithms for Parameter Estimation -- 3 Methodology of Evaluation and Simulation -- 3.1 Evaluation and Simulation -- 4 Results -- 5 Conclusions and Further Work -- References -- Random Hyper-parameter Search-Based Deep Neural Network for Power Consumption Forecasting -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Hyper-parameters Tuning -- 3.2 Multi-step to Single-step Regression -- 3.3 Smoothing Filter -- 4 Results -- 4.1 Dataset Description -- 4.2 Error Metrics -- 4.3 Performance in Terms of Error -- 5 Conclusions -- References -- A First Approximation to the Effects of Classical Time Series Preprocessing Methods on LSTM Accuracy -- 1 Introduction -- 2 LSTM -- 3 Preprocessing Methods
  • 4.1 The Relation Between Influenza-Like Illness Incidence Rate and Deaths -- 4.2 Analysis of Beijing Air Quality -- 5 Conclusion -- Acknowledgments -- References -- Use of Complex Networks for the Automatic Detection and the Diagnosis of Alzheimer's Disease -- 1 Introduction -- 2 Methods -- 3 Network Measures -- 3.1 Clustering Coefficient -- 3.2 Mean Jump Length -- 3.3 Betweenness Centrality -- 4 Data -- 5 Results -- 6 Conclusions -- References -- The Generalized Sleep Spindles Detector: A Generative Model Approach on Single-Channel EEGs -- 1 Introduction -- 2 A Problem Beyond Detection -- 3 Methods -- 3.1 The Discriminative Embedding Transform -- 3.2 MDL-Based Clustering -- 4 Results -- 5 Conclusion -- References -- DeepTrace: A Generic Framework for Time Series Forecasting -- 1 Introduction -- 2 Preliminary -- 2.1 Autocorrelation -- 2.2 1-D Convolutions -- 2.3 Data Preparation -- 2.4 Metrics -- 3 Model Architecture -- 3.1 Convolutional Block (CB) -- 3.2 Recurrent Block (RB) -- 3.3 Linear Block (LB) -- 3.4 Residual Connections -- 3.5 Model Variants -- 4 Training and Testing Phase -- 5 Optimization -- 6 Experimentation -- 7 Conclusions -- References -- Automatic Identification of Interictal Epileptiform Discharges with the Use of Complex Networks -- 1 Introduction -- 2 Methods -- 3 Network Measures -- 3.1 Strongly Connected Component (SCC) -- 3.2 Average Shortest Path Length (L) -- 3.3 Mean Jump Length () -- 4 Data -- 5 Results -- 6 Conclusions -- References -- Anomaly Detection for Bivariate Signals -- 1 Introduction -- 2 Methodology -- 2.1 Clustering -- 2.2 Introducing Reference Curves for Summarizing the Clusters -- 2.3 Time-Series Realignment Within Clusters -- 2.4 Anomaly Detection -- 3 An Experimental Example on Simulated Data -- 4 An Application to Real-World Data -- 5 Conclusion -- References