Functional Imaging and Modeling of the Heart 11th International Conference, FIMH 2021, Stanford, CA, USA, June 21-25, 2021, Proceedings

This book constitutes the refereed proceedings of the 11th International Conference on Functional Imaging and Modeling of the Heart, which took place online during June 21-24, 2021, organized by the University of Stanford. The 65 revised full papers were carefully reviewed and selected from 68 submi...

Full description

Saved in:
Bibliographic Details
Main Authors Ennis, Daniel B, Perotti, Luigi E, Wang, Vicky Y
Format eBook
LanguageEnglish
Published Netherlands Springer Nature 2021
Springer International Publishing AG
Springer International Publishing
Edition1
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN3030787109
9783030787103
9783030787097
3030787095

Cover

Table of Contents:
  • 3.2 The Sheetlet Angle Measured Using the Fourier-Based Method -- 3.3 Angle : Comparison Between the Skeleton and Fourier-Based Methods -- 4 Results -- 5 Discussion -- 6 Conclusion -- References -- A High-Fidelity 3D Micromechanical Model of Ventricular Myocardium -- 1 Introduction -- 2 Methods -- 2.1 Finite Element Mesh Construction -- 2.2 Constitutive Modeling -- 2.3 FE Simulations -- 3 Results -- 4 Discussion -- References -- Quantitative Interpretation of Myocardial Fiber Structure in the Left and Right Ventricle of an Equine Heart Using Diffusion Tensor Cardiovascular Magnetic Resonance Imaging -- 1 Introduction -- 2 Method -- 2.1 MRI Protocol -- 2.2 Processing -- 2.3 Helix Angle Calculation -- 2.4 Analysis -- 3 Results -- 4 Discussion -- References -- Analysis of Location-Dependent Cardiomyocyte Branching -- 1 Introduction -- 1.1 Definition of Terms -- 2 Methods -- 2.1 Extended Volume Confocal Microscopy -- 2.2 Cardiomyocyte Network Analysis -- 3 Results -- 4 Discussion -- 4.1 Physiological Significance -- 4.2 Cardiomyocyte Branching and Myocardial Deformation -- 4.3 Growth and Remodeling -- 4.4 Limitations -- 5 Conclusion -- References -- Systematic Study of Joint Influence of Angular Resolution and Noise in Cardiac Diffusion Tensor Imaging -- 1 Introduction -- 2 Materials and Methods -- 2.1 Simulated Datasets -- 2.2 Real Datasets -- 2.3 Gradient Direction Sampling -- 2.4 Evaluation -- 3 Results -- 3.1 Results on Simulated Data -- 3.2 Results on Real Data -- 4 Conclusions and Discussions -- References -- Novel Approaches to Measuring Heart Deformation -- Arbitrary Point Tracking with Machine Learning to Measure Cardiac Strains in Tagged MRI -- 1 Introduction -- 2 Methods -- 2.1 Tag Tracking -- 2.2 Strain Calculation -- 2.3 Computational Deforming Cardiac Phantom -- 2.4 In Vivo Data -- 3 Results -- 4 Discussion -- References
  • 2.3 Multiscale Spatio-Temporal Graph Convolutional Neural Network
  • 2.3 Accuracy Estimation -- 3 Results -- 4 Discussion and Conclusions -- References -- Efficient Model Monitoring for Quality Control in Cardiac Image Segmentation -- 1 Introduction -- 2 Method -- 3 Experiments and Results -- 3.1 Experimental Setup -- 3.2 Results -- 4 Discussion and Conclusions -- References -- Domain Adaptation for Automatic Aorta Segmentation of 4D Flow Magnetic Resonance Imaging Data from Multiple Vendor Scanners -- 1 Introduction -- 2 Materials and Methods -- 2.1 Population Datasets -- 2.2 nn-Unet Architecture and Experimental Setup -- 2.3 Domain Adaptation -- 2.4 Post-processing -- 2.5 Experiments -- 3 Results -- 4 Discussion -- 5 Conclusions -- References -- A Multi-step Machine Learning Approach for Short Axis MR Images Segmentation -- 1 Introduction -- 2 Method -- 2.1 Imaging Data -- 2.2 Image Preprocessing -- 2.3 Convolutional Neural Networks -- 2.4 Training -- 2.5 Weighted Average and Image Correction -- 2.6 Spline Interpolation and LV Surface Generation -- 3 Results -- 4 Discussion -- References -- Cardiac Microstructure: Measures and Models -- Diffusion Biomarkers in Chronic Myocardial Infarction -- 1 Introduction -- 2 Methods -- 2.1 Experimental and Imaging Procedures -- 2.2 Diffusion Tensor Reconstruction and Image Labeling -- 2.3 Data Analysis -- 3 Results -- 4 Discussion -- References -- Spatially Constrained Deep Learning Approach for Myocardial T1 Mapping -- 1 Introduction -- 2 Methods -- 2.1 Dataset -- 2.2 Identification of Myocardial Tissue for Training -- 2.3 Spatially Constrained Deep Learning T1 Mapping -- 3 Results -- 4 Discussion -- 5 Conclusions -- References -- A Methodology for Accessing the Local Arrangement of the Sheetlets that Make up the Extracellular Heart Tissue -- 1 Introduction -- 2 Material -- 3 Data Processing Strategy -- 3.1 The Sheetlet Angle Measured Using the Skeleton Method
  • Investigation of the Impact of Normalization on the Study of Interactions Between Myocardial Shape and Deformation -- 1 Introduction -- 2 Methods -- 2.1 Data and Descriptors -- 2.2 Manifold Learning -- 3 Experiments and Results -- 3.1 Shape Descriptors -- 3.2 Deformation Descriptors -- 4 Discussion and Conclusion -- References -- Reproducibility of Left Ventricular CINE DENSE Strain in Pediatric Subjects with Duchenne Muscular Dystrophy -- 1 Introduction -- 2 Methods -- 2.1 Study Enrollment -- 2.2 MR Imaging and Post-processing -- 2.3 Reproducibility and Statistics -- 3 Results -- 3.1 Global and Regional Ecc -- 3.2 Intra-observer Repeatability -- 3.3 Intra-exam Reproducibility -- 3.4 Inter-observer Reproducibility -- 4 Discussion -- 5 Conclusion -- References -- M-SiSSR: Regional Endocardial Function Using Multilabel Simultaneous Subdivision Surface Registration -- 1 Introduction -- 2 Methods -- 2.1 Dataset and Annotation -- 2.2 Left Heart Segmentation -- 2.3 Boundary Candidate Selection -- 2.4 Mesh Model Generation -- 2.5 Subdivision Surface Evaluation -- 2.6 Multilabel SiSSR (M-SiSSR) -- 2.7 Implementation -- 3 Results -- 3.1 CNN Segmentation -- 3.2 Template Mesh Generation -- 3.3 Determining Scaling Factors -- 3.4 Comparison to Label-Agnostic Approach: M-SiSSR vs SiSSR -- 4 Discussion -- References -- CNN-Based Cardiac Motion Extraction to Generate Deformable Geometric Left Ventricle Myocardial Models from Cine MRI -- 1 Introduction -- 2 Methodology -- 2.1 Cardiac MRI Data -- 2.2 Image Preprocessing -- 2.3 Deformable Image Registration -- 2.4 Mesh Generation and Propagation -- 3 Results and Discussion -- 4 Conclusion -- References -- Multiscale Graph Convolutional Networks for Cardiac Motion Analysis -- 1 Introduction -- 2 Method -- 2.1 Multiscale Cardiac Graph Construction -- 2.2 Multiscale Graph Computation Unit (MGCU)
  • Intro -- Preface -- Organization -- Contents -- Advanced Cardiac and Cardiovascular Image Processing -- Population-Based Personalization of Geometric Models of Myocardial Infarction -- 1 Introduction -- 2 Methods -- 2.1 Data and Pre-processing -- 2.2 Geometric Models of Myocardial Infarction -- 2.3 Personalization of the Models -- 3 Experiments and Results -- 3.1 CMA-ES Parameters and Convergence -- 3.2 Distribution of the Synthetic and Real Populations -- 4 Discussion -- References -- Impact of Image Resolution and Resampling on Motion Tracking of the Left Chambers from Cardiac Scans -- 1 Introduction -- 2 Methods -- 2.1 Clinical Data -- 2.2 Preprocessing Data -- 2.3 Resampling Data -- 2.4 Endocardium Motion Estimation -- 2.5 Calculation of Strain on Endocardium -- 2.6 Analysis of Motion Tracking Error -- 3 Results -- 3.1 Impact of Spatial Resolution on Short Axis Reconstruction -- 3.2 Impact of Spatial Resolution on Long Axis Reconstruction -- 3.3 Discussion -- 3.4 Limitations -- 4 Conclusion -- References -- Shape Constraints in Deep Learning for Robust 2D Echocardiography Analysis -- 1 Introduction -- 2 Methods -- 2.1 SEG-LM: Parallel Segmentation and Landmark Detection -- 2.2 SEG-AFFINE: Poly-affine Regulariser for Myocardium -- 2.3 SEG-CONTOUR: Multi-class Contour-Loss -- 3 Experiments and Results -- 3.1 Datasets -- 3.2 Experiments -- 3.3 Evaluation Metrics -- 3.4 Results -- 4 Conclusion -- References -- Image-Derived Geometric Characteristics Predict Abdominal Aortic Aneurysm Growth in a Machine Learning Model -- 1 Introduction -- 2 Methods -- 2.1 Data Generation and Pre-processing -- 2.2 Image-Derived Geometric Parameter Calculations -- 2.3 Image-Derived Predictors and Outcome Calculations -- 2.4 Machine Learning Model Selection -- 2.5 Tuning of the Machine Learning Model -- 2.6 Assessment of Machine Learning Model Performance
  • 3 Results -- 4 Discussion and Future Direction -- References -- Cardiac MRI Left Ventricular Segmentation and Function Quantification Using Pre-trained Neural Networks -- 1 Introduction -- 2 Materials and Methods -- 2.1 Cardiac MRI Datasets -- 2.2 Algorithm Pipeline -- 2.3 Evaluation Methods -- 2.4 Statistical Analysis -- 3 Results -- 4 Discussion -- References -- Three-Dimensional Embedded Attentive RNN (3D-EAR) Segmentor for Left Ventricle Delineation from Myocardial Velocity Mapping -- 1 Introduction -- 2 Method -- 2.1 Data Acquisition, Preprocessing and Augmentation -- 2.2 Network Architectures -- 2.3 Loss Functions -- 2.4 Implementation Details -- 3 Results -- 3.1 Experiments and Evaluation Metrics -- 3.2 Quantitative Results -- 4 Discussion and Conclusion -- References -- Whole Heart Anatomical Refinement from CCTA Using Extrapolation and Parcellation -- 1 Introduction -- 2 Methods -- 2.1 Data -- 2.2 Image-to-Label Initial Segmentation -- 2.3 Label Processing -- 2.4 Label to Label Networks -- 2.5 Image to Label Refinement -- 3 Results -- 3.1 Image to Label Initial Segmentation -- 3.2 Label to Label Refinement -- 3.3 Image to Label Final Segmentation -- 4 Conclusions and Limitations -- References -- Optimisation of Left Atrial Feature Tracking Using Retrospective Gated Computed Tomography Images -- 1 Introduction -- 2 Methods -- 3 Results -- 4 Discussion -- 5 Limitations and Future Work -- 6 Conclusion -- References -- Assessment of Geometric Models for the Approximation of Aorta Cross-Sections -- 1 Introduction -- 2 Materials and Methods -- 2.1 Clinical Data -- 2.2 Cross-Section Models -- 2.3 Error Measurement -- 3 Results -- 3.1 Slice Fitting Error Distribution -- 4 Conclusion -- References -- Improved High Frame Rate Speckle Tracking for Echocardiography -- 1 Introduction -- 2 Methods -- 2.1 Simulation Setup -- 2.2 2-D Motion Estimator