Adjustment Models in 3D Geomatics and Computational Geophysics With MATLAB Examples
This volume introduces a complete package of theoretical and practical subjects in adjustment computations related to geomatics and geophysical applications, particularly photogrammetry, surveying, remote sensing, GIS, cartography, geodesy, and computing. Presented in a simple way supported by illus...
        Saved in:
      
    
          | Main Author | |
|---|---|
| Format | eBook | 
| Language | English | 
| Published | 
        Chantilly
          Elsevier
    
        2019
     | 
| Edition | 1 | 
| Series | Computational geophysics | 
| Subjects | |
| Online Access | Get full text | 
| ISBN | 0128175885 9780128175880  | 
| DOI | 10.1016/C2018-0-02477-9 | 
Cover
                Table of Contents: 
            
                  - 11.1. Introduction -- 11.2. Misfit and Model Norm -- 11.3. Pseudo Code -- Chapter 12: Postanalysis in Adjustment Computations -- 12.1. Introduction -- 12.2. Goodness of Fit Test -- 12.3. Classification of Errors in Hypothesis Testing -- 12.4. Blunder Detection, Identification, and Adaptation -- 12.4.1. Data Snooping -- 12.4.2. Robust Estimation Technique -- 12.4.3. Random Sample Consensus -- 12.5. Reliability Computations -- 12.5.1. Redundancy Number -- 12.5.2. Internal Reliability -- 12.5.3. External Reliability -- Appendix A: MATLAB Code of General 2D Geodetic Network Adjustment -- References -- Index -- Back Cover
 - Front Cover -- Adjustment Models in 3D Geomatics and Computational Geophysics: With MATLAB Examples -- Copyright -- Contents -- Preface -- Chapter 1: Statistical Introduction -- 1.1. Introduction -- 1.2. Statistical Definitions and Terminologies -- 1.3. Statistical Indexes -- 1.4. Normal Distribution Curve -- 1.5. Cumulative Distribution Function -- 1.6. The Probable Error and Levels of Rejection -- 1.7. Principle of Least Squares Adjustment -- 1.8. Weighted Observations -- Chapter 2: Propagation of Errors -- 2.1. Introduction -- 2.2. Propagation of Errors Law -- 2.3. Using Matrix Form for Propagation of Errors -- 2.4. Applications -- 2.4.1. Application in Laser Scanning (Lidar Sensors) -- 2.4.2. Application in Computing the Area of a Polygon in 3D Space -- 2.5. Preanalysis of Errors -- 2.5.1. Preanalysis Using the Kronecker Product -- 2.5.2. Preanalysis Using the Generalized inverse -- Chapter 3: Least Squares Adjustment Procedures -- 3.1. Introduction -- 3.2. Adjustments by Observation Equations Method v+BΔ=F -- 3.3. Adjustment by Condition Equations Method -- 3.4. Graphical Representations of the Positional Error -- 3.4.1. Ellipse of Errors -- 3.4.2. Relative Ellipse of Errors -- 3.4.3. Ellipsoid of Errors -- 3.5. Homogenous Least Squares Adjustment -- 3.5.1. Application in Image Rectification Using Homography -- Chapter 4: Observation Models and Least Squares Adjustment -- 4.1. Introduction -- 4.2. Observation Models in 2D -- 4.2.1. Observation Model of a 2D Distance -- 4.2.2. Observation Model of Azimuth Direction -- 4.2.3. Observation Model of an Angle -- 4.3. Observation Model of 3D Distances -- 4.4. Observation Model of Vertical Angles -- 4.5. Observation Model of 3D Line Intersection -- 4.6. Observation Model of 3D Resection With Oblique Angles -- 4.7. Observation Models in Photogrammetry -- 4.7.1. Image Space Resection (Camera Pose)
 - 4.8.1. Image Triangulation (Space Intersection) -- 4.9. Least Squares Adjustment in Computational Geophysics -- 4.9.1. Seismic Waves and Earth's Interior -- 4.9.2. Earthquake Localization and Least Squares Adjustment -- Chapter 5: Adjustment Using General Observation Model (Av+BΔ=F) -- 5.1. Introduction -- 5.2. Derivation of LS Adjustment by the Generic Model -- Chapter 6: Adjustment With Constraints -- 6.1. Introduction -- 6.2. Mathematical Derivation -- 6.3. Constrained Adjustment With Additional Parameters -- 6.4. Adjustment With Inner Constraints (Free Adjustment) -- Chapter 7: Unified Approach of Least Squares -- 7.1. Introduction -- 7.2. The Derivation of the Unified Adjustment -- 7.3. Unified Approach of Least Squares With Constraints -- Chapter 8: Fitting Geometric Primitives With Least Squares -- 8.1. Introduction -- 8.2. Fitting a Plane -- 8.3. Fitting a 3D Line -- 8.4. Fitting a Sphere -- 8.5. Fitting a Circle in 3D Space -- 8.5.1. Fitting a 2D Circle -- 8.5.2. Rodrigues Rotation Formula -- 8.6. Fitting a Cylinder -- Chapter 9: 3D Transformation and Coregistration -- 9.1. Introduction -- 9.2. Points to Points Transformation -- 9.2.1. Nonlinear Least Squares Solution of 3D Similarity Transformation -- 9.2.2. Closed Form Solution of 3D Similarity Transformation -- 9.3. Point To Plane Transformation -- 9.4. Planes to Planes Transformation -- Chapter 10: Kalman Filter -- 10.1. Introduction -- 10.2. Derivation of Kalman Filter -- 10.2.1. First Step: Prediction -- 10.2.2. Second Step: Corrections and Update -- 10.2.3. Summary -- 10.3. Example in Structural Deformation Monitoring -- 10.3.1. First Month -- 10.3.2. Second Month -- 10.4. Example of Airplane Flight Simulation -- Given -- Required -- Solution -- At time t=0s -- At time t=1s -- At time t=2s -- Chapter 11: Introduction to the adjustment With Levenberg-Marquardt Method