Link Prediction of Social Networks Based on Weighted Proximity Measures

Question-Answering Bulletin Boards (QABB), such as Yahoo! Answers and Windows Live QnA, are gaining popularity recently. Communications on QABB connect users, and the overall connections can be regarded as a social network. If the evolution of social networks can be predicted, it is quite useful for...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the IEEE/WIC/ACM International Conference on Web Intelligence pp. 85 - 88
Main Authors Murata, Tsuyoshi, Moriyasu, Sakiko
Format Conference Proceeding
LanguageEnglish
Published Washington, DC, USA IEEE Computer Society 02.11.2007
SeriesACM Conferences
Subjects
Online AccessGet full text
ISBN0769530265
9780769530260
DOI10.1109/WI.2007.71

Cover

More Information
Summary:Question-Answering Bulletin Boards (QABB), such as Yahoo! Answers and Windows Live QnA, are gaining popularity recently. Communications on QABB connect users, and the overall connections can be regarded as a social network. If the evolution of social networks can be predicted, it is quite useful for encouraging communications among users. This paper describes an improved method for predicting links based on weighted proximity measures of social networks. The method is based on an assumption that proximities between nodes can be estimated better by using both graph proximity measures and the weights of existing links in a social network. In order to show the effectiveness of our method, the data of Yahoo! Chiebukuro (Japanese Yahoo! Answers) are used for our experiments. The results show that our method outperforms previous approaches, especially when target social networks are sufficiently dense.
ISBN:0769530265
9780769530260
DOI:10.1109/WI.2007.71