Fuel Cells for Transportation - Fundamental Principles and Applications

This book is the first comprehensive reference on the application of fuel cells for light- and heavy-duty transportation. Addressing the subject from both a materials and engineering perspective, the book examines integration, modeling, and optimization of fuel cells from fundamentals to the latest...

Full description

Saved in:
Bibliographic Details
Main Authors Das, Prodip K, Jiao, Kui, Wang, Yun, Barbir, Frano, Li, Xianguo
Format eBook
LanguageEnglish
Published Chantilly Elsevier 2023
Elsevier Science & Technology
Woodhead Publishing
Edition1
Subjects
Online AccessGet full text
ISBN0323994857
9780323994859
DOI10.1016/C2021-0-01629-1

Cover

Table of Contents:
  • Title Page Preface Table of Contents 1. Fuel Cells for Transportation - An Overview 2. Fuel Cell Fundamentals 3. Fuel Cell Modeling and Optimization 4. Lattice Boltzmann Modeling and Artificial Intelligence 5. Low Platinum-Based Electrocatalysts for Fuel Cells: Status and Prospects 6. Platinum Group Metal-Free Catalysts for Fuel Cells: Status and Prospects 7. Effective Transport Properties for Fuel Cells: Modeling and Experimental Characterization 8. Liquid Water Transport and Management for Fuel Cells 9. Fuel Cell Short Stack Testing 10. Power Demand for Fuel Cell System in Hybrid Vehicles 11. Bipolar Plates and Flow Field Design 12. Heat Transport and Thermal Management 13. Mass Transport in the Cathode 14. Control-Oriented Computational Fluid Dynamics Models for Polymer Electrolyte Membrane Fuel Cells 15. Fuel Cell Durability under Automotive Driving Cycles - Fundamentals and Experiments 16. Subzero Startup of Polymer Electrolyte Fuel Cell - A Battle between Water and Thermal Management at Low Temperatures 17. Solid Oxide Fuel Cells for Vehicles 18. Hydrogen Refueling Stations/Infrastructure Index
  • 10.5 A case study for the fuel cell hybrid electric vehicles energy management strategy -- 10.6 Conclusion -- References -- 11 Bipolar plates and flow field design -- 11.1 Introduction -- 11.2 Bipolar plates -- 11.2.1 Functions -- 11.2.2 Requirements -- 11.3 Flow field design -- 11.3.1 Flow field without guided flow path -- 11.3.2 Flow field with guided flow path -- 11.3.2.1 Parallel flow channels -- 11.3.2.2 Serpentine flow channels -- 11.3.2.3 Interdigitated flow channels -- 11.3.2.4 Strategies for improvement and hybridization of flow channel designs -- 11.3.2.5 Flow field design with metallic bipolar plates -- 11.3.2.6 Latest developments in practical flow field design -- 11.4 Materials and manufacturing -- 11.4.1 Typical materials and classification -- 11.4.2 Graphite -- 11.4.3 Carbon composite -- 11.4.4 Metallic bipolar plates -- 11.5 Summary -- Acknowledgments -- References -- 12 Heat transport and thermal management -- 12.1 Introduction -- 12.2 The heat in proton exchange membrane fuel cell -- 12.2.1 Heat generation -- 12.2.2 Heat transport -- 12.3 Proton exchange membrane fuel cell thermal management -- 12.3.1 The cooling of proton exchange membrane fuel cell -- 12.3.1.1 Air cooling -- 12.3.1.2 Heat spreader cooling -- 12.3.1.3 Liquid cooling -- 12.3.1.4 Nanofluids cooling -- 12.3.1.5 Phase-change cooling -- 12.3.2 Thermal management subsystem -- 12.3.3 Control strategy -- 12.3.3.1 Proportional-integral-derivative control -- 12.3.3.2 Model predictive control -- 12.3.3.3 Adaptive control -- 12.3.3.4 Fuzzy control -- 12.3.3.5 Robust control -- 12.3.3.6 Artificial neural network -- 12.3.4 Cold start -- 12.4 Summary -- Nomenclature -- References -- 13 Mass transport in the cathode -- 13.1 Mass transfer in cathode gas flow fields -- 13.1.1 Characterization of oxygen distribution and water removal
  • 5.4.5 Synthesis of 2D Pt-based nanostructures -- 5.5 Postsynthesis treatments of Pt-based electrocatalysts -- 5.6 Future direction and prospects -- 5.6.1 Studies on functionalization of commercial carbon supports -- 5.6.2 Production of Pt-based electrocatalysts -- 5.6.3 Postsynthesis treatment -- References -- 6 Platinum group metal-free catalysts for fuel cells: status and prospects -- 6.1 Introduction -- 6.2 Platinum group metal-free catalyst development -- 6.3 Integration of platinum group metal-free catalyst in membrane electrode assembly -- 6.3.1 Effect of ionomer loading, equivalent weight of ionomer, and dispersion of ionomer in solvent -- 6.3.2 Effect of primary particle size -- 6.3.3 Engineering cathode to improve water management -- 6.4 Stability and durability of platinum group metal-free cathode -- 6.4.1 Micropore flooding -- 6.4.2 Active site protonation -- 6.4.3 Demetallation, carbon oxidation, and attack of peroxide and associated radicals -- 6.5 Mitigation strategies -- 6.6 Summary -- Acknowledgments -- References -- 7 Effective transport properties for fuel cells: modeling and experimental characterization -- 7.1 Introduction -- 7.2 Structure and composition of porous transport layers in fuel cells -- 7.2.1 Porosity and pore size -- 7.2.2 Wettability -- 7.3 Effective transport properties -- 7.3.1 Effective diffusivity -- 7.3.2 Local mass transport resistance -- 7.3.3 Permeability -- 7.3.4 Effective thermal conductivity -- 7.3.5 Effective electrical conductivity -- 7.3.6 Effective ionic conductivity -- 7.4 Modeling and experimental techniques -- 7.4.1 Modeling -- 7.4.2 Experimental -- 7.5 Summary -- References -- 8 Liquid water transport and management for fuel cells -- 8.1 Water production -- 8.2 Two-phase flow basics -- 8.3 PEMFC architecture -- 8.3.1 Membrane -- 8.3.2 Catalyst layer -- 8.3.3 Microporous layer
  • 3.2.3 Modeling of water transport through the membrane -- 3.2.4 Modeling of water transport through porous electrodes -- 3.2.5 Catalyst layer modeling -- 3.3 Numerical optimization of PEMFCs -- 3.3.1 Electrode optimization -- 3.3.2 Flow fields optimization -- 3.3.3 Fuel cell stack optimization -- 3.3.4 Operating condition optimization -- 3.3.5 Multivariable optimization and data-driven surrogate modeling -- 3.4 Summary -- References -- 4 Lattice Boltzmann modeling and artificial intelligence -- 4.1 Overview of lattice Boltzmann method and artificial intelligence -- 4.2 Application of lattice Boltzmann method in fuel cells -- 4.2.1 Current status of pore-scale research in gas diffusion layer -- 4.2.2 Current status of pore-scale research in the microporous layer -- 4.2.3 Current status of pore-scale research in catalyst layer -- 4.3 Artificial intelligence method -- 4.3.1 Parameter optimization -- 4.3.2 Model predictive control -- 4.3.3 Prognostics and health management -- 4.3.4 Fault diagnosis -- 4.4 Combination of lattice Boltzmann method and artificial intelligence -- 4.5 Summary -- References -- 5 Low platinum-based electrocatalysts for fuel cells: status and prospects -- 5.1 Introduction -- 5.2 Functionalization of commercial carbon supports -- 5.2.1 Effects of the structure and surface properties of carbon support -- 5.2.2 Functionalization methods of commercial carbon supports -- 5.3 Methods for loading Pt-based electrocatalysts on carbon supports -- 5.3.1 One-pot synthesis method -- 5.3.2 Ex situ mixing method -- 5.4 Synthesis of Pt-based electrocatalysts -- 5.4.1 Synthesis of Pt-based spherical nanoparticles -- 5.4.2 Synthesis of Pt-based polyhedrons -- 5.4.3 Synthesis of Pt-based open nanostructures -- 5.4.3.1 Galvanic replacement reaction -- 5.4.3.2 Chemical etching -- 5.4.4 Synthesis of 1D Pt-based nanostructures
  • Front Cover -- Fuel Cells for Transportation -- Copyright Page -- Contents -- List of contributors -- About the editors -- Preface -- 1 Fuel cells for transportation-an overview -- 1.1 Introduction -- 1.2 Hydrogen and fuel cell -- 1.3 History of hydrogen and fuel cell development -- 1.4 Fuel cells for transportation -- 1.5 Present status of fuel cells for transportation -- 1.6 Future of hydrogen and fuel cells -- 1.7 Conclusions -- References -- 2 Fuel cell fundamentals -- 2.1 Introduction -- 2.2 Operation principle of proton-exchange membrane fuel cells -- 2.3 Reaction kinetics and transport processes -- 2.3.1 Electrode kinetics -- 2.3.1.1 Butler-Volmer kinetics -- 2.3.1.2 Agglomerate kinetics -- 2.3.1.3 Conservation of charge -- 2.3.1.4 Exchange current density and charge transfer coefficient -- 2.3.1.5 Electrical and ionic conductivities -- 2.3.2 Multicomponent mass transport -- 2.3.2.1 Conservation of momentum -- 2.3.2.2 Maxwell-Stefan diffusion -- 2.3.2.3 Knudsen diffusion -- 2.3.3 Heat transport -- 2.3.3.1 Conservation of energy -- 2.3.3.2 Specific heat capacity and thermal conductivity -- 2.4 Electrode properties -- 2.4.1 Porosity of the catalyst layer -- 2.4.2 Agglomerate density -- 2.4.3 Thicknesses of the ionomer and liquid water films -- 2.4.4 Specific area -- 2.4.5 Deformation of porous electrode -- 2.5 Water management -- 2.5.1 Water phase-transfer and water transport through membrane -- 2.5.2 Diffusion of species in Nafion ionomer with different membrane water content -- 2.5.3 Two-phase flow of gas-water mixture -- 2.6 Summary -- Review questions -- References -- 3 Fuel cell modeling and optimization -- 3.1 Introduction -- 3.2 Fuel cell modeling approach and key physicochemical and operating parameters -- 3.2.1 Water formation and transport in fuel cells -- 3.2.2 PEMFC modeling approaches
  • 8.3.4 Gas diffusion layer -- 8.4 Channels and flow fields -- 8.5 Liquid management concerns and strategies -- 8.6 Pressure and flow control -- 8.7 Thermal regulation and humidification -- 8.8 Startup/shutdown -- 8.9 Surface coatings -- 8.10 Ultrathin electrodes -- 8.11 Patterned and structured porous media -- 8.12 Summary -- References -- 9 Fuel cell short stack testing -- 9.1 Introduction -- 9.2 Principles of fuel cell operation and testing -- 9.3 Testing requirements -- 9.4 Measurement techniques -- 9.4.1 Characterization of test station -- 9.4.1.1 Recirculation loop volume -- 9.4.1.2 Recirculation rate -- 9.4.1.3 Hydrogen utilization -- 9.4.2 Stack operation -- 9.4.2.1 Leak testing -- 9.4.2.2 Start-up -- 9.4.2.3 Operation, break-in, and conditioning -- 9.4.2.4 Shutdown -- 9.4.3 Diagnostics -- 9.4.3.1 Polarization curves -- 9.4.3.2 Electrochemical impedance spectroscopy -- 9.4.3.3 Voltammetry -- 9.4.3.4 Electrochemically active surface area -- 9.4.3.5 Current interrupt -- 9.4.3.6 Online gas and water analysis -- 9.4.3.7 Impurity analysis -- 9.4.4 Durability testing -- 9.4.4.1 Constant load operation -- 9.4.4.2 Start/stop durability -- 9.5 Summary -- Acknowledgments -- References -- 10 Power demand for fuel cell system in hybrid vehicles -- 10.1 Introduction to hybrid fuel cell powertrain -- 10.2 Fuel cell hybrid electric vehicle road testing profiles -- 10.3 Fuel cell hybrid electric vehicle body modeling -- 10.4 Fuel cell power demand from hybrid powertrain -- 10.4.1 The importance of energy management strategy -- 10.4.2 Major influential factors of fuel cell operation in vehicle applications -- 10.4.3 State of the art of fuel cell hybrid electric vehicles energy management strategies -- 10.4.3.1 Rule-based strategy -- 10.4.3.2 Optimization-based strategy -- 10.4.3.3 Learning-based strategy
  • 13.1.2 Mass transfer in conventional flow channels