Principles of Turbomachinery (2nd Edition)
In mechanical engineering, turbomachinery describes machines that transfer energy between a rotor and a fluid, including turbines, compressors, and pumps. Aiming for a unified treatment of the subject matter, with consistent notation and concepts, this new edition of a highly popular book provides a...
        Saved in:
      
    
          | Main Author | |
|---|---|
| Format | eBook Book | 
| Language | English | 
| Published | 
        Hoboken
          John Wiley & Sons
    
        2019
     Wiley John Wiley & Sons, Incorporated John Wiley and Sons, Inc Wiley-Blackwell  | 
| Edition | 2nd ed | 
| Subjects | |
| Online Access | Get full text | 
| ISBN | 9781119518082 1119518083 9781119518099 1119518091  | 
Cover
                Table of Contents: 
            
                  - Title Page Table of Contents 1. Introduction 2. Principles of Thermodynamics and Fluid Flow 3. Compressible Flow 4. Gas Dynamics of Wet Steam 5. Principles of Turbomachine Analysis 6. Steam Turbines 7. Axial Turbines 8. Axial Compressors 9. Centrifugal Compressors and Pumps 10. Radial Inflow Turbines 11. Hydraulic Turbines 12. Hydraulic Transmission of Power 13. Wind Turbines Appendices References Index
 - 10.5 Design of the Inlet of a Radial Inflow Turbine -- 10.5.1 Minimum inlet Mach number -- 10.5.2 Blade stagnation Mach number -- 10.5.3 Inlet relative Mach number -- 10.6 Design of the Exit -- 10.6.1 Minimum exit Mach number -- 10.6.2 Radius ratio r3s/r2 -- 10.6.3 Blade height‐to‐radius ratio b2/r2 -- 10.6.4 Optimum incidence angle and the number of blades -- Chapter 11 Hydraulic Turbines -- 11.1 Hydroelectric Power Plants -- 11.2 Hydraulic Turbines and their Specific Speed -- 11.3 Pelton Wheel -- 11.4 Francis Turbine -- 11.5 Kaplan Turbine -- 11.6 Cavitation -- Chapter 12 Hydraulic Transmission of Power -- 12.1 Fluid Couplings -- 12.1.1 Fundamental relations -- 12.1.2 Flow rate and hydrodynamic losses -- 12.1.3 Partially filled coupling -- 12.2 Torque Converters -- 12.2.1 Fundamental relations -- 12.2.2 Performance -- Chapter 13 Wind Turbines -- 13.1 Horizontal‐Axis Wind Turbine -- 13.2 Momentum Theory of Wind Turbines -- 13.2.1 Axial momentum -- 13.2.2 Ducted wind turbine -- 13.2.3 Wake rotation -- 13.2.4 Irrotational wake -- 13.3 Blade Element Theory -- 13.3.1 Nonrotating wake -- 13.3.2 Wake with rotation -- 13.3.3 Ideal wind turbine -- 13.3.4 Prandtl's tip correction -- 13.4 Turbomachinery and Future Prospects for Energy -- Appendix A Streamline Curvature and Radial Equilibrium -- A.1 Streamline Curvature Method -- A.1.1 Fundamental equations -- A.1.2 Formal solution -- Appendix B Thermodynamic Tables -- References -- Index -- EULA
 - Cover -- Title Page -- Copyright -- Contents -- Foreword -- Acknowledgments -- About the Companion Website -- Chapter 1 Introduction -- 1.1 Energy and Fluid Machines -- 1.1.1 Energy conversion of fossil fuels -- 1.1.2 Steam turbines -- 1.1.3 Gas turbines -- 1.1.4 Hydraulic turbines -- 1.1.5 Wind turbines -- 1.1.6 Compressors -- 1.1.7 Pumps and blowers -- 1.1.8 Other uses and issues -- 1.2 Historical Survey -- 1.2.1 Water power -- 1.2.2 Wind turbines -- 1.2.3 Steam turbines -- 1.2.4 Jet propulsion -- 1.2.5 Industrial turbines -- 1.2.6 Pumps and compressors -- 1.2.7 Note on units -- Chapter 2 Principles of Thermodynamics and Fluid Flow -- 2.1 Mass Conservation Principle -- 2.2 First Law of Thermodynamics -- 2.3 Second Law of Thermodynamics -- 2.3.1 Tds‐equations -- 2.4 Equations of State -- 2.4.1 Properties of steam -- 2.4.2 Ideal gases -- 2.4.3 Air tables and isentropic relations -- 2.4.4 Ideal gas mixtures -- 2.4.5 Incompressibility -- 2.4.6 Stagnation state -- 2.5 Efficiency -- 2.5.1 Efficiency measures -- 2.5.2 Thermodynamic losses -- 2.5.3 Incompressible fluid -- 2.5.4 Compressible flows -- 2.6 Momentum Balance -- Chapter 3 Compressible Flow -- 3.1 Mach Number and The Speed of Sound -- 3.1.1 Mach number relations -- 3.2 Isentropic Flow with Area Change -- 3.2.1 Converging nozzle -- 3.3 Influence of Friction on Flow Through Nozzles -- 3.3.1 Polytropic efficiency -- 3.3.2 Loss coefficients -- 3.3.3 Nozzle efficiency -- 3.3.4 Combined Fanno flow and area change -- 3.4 Supersonic Nozzle -- 3.5 Normal Shocks -- 3.5.1 Rankine-Hugoniot relations -- 3.6 Moving Shocks -- 3.7 Oblique Shocks and Expansion Fans -- 3.7.1 Mach waves -- 3.7.2 Oblique shocks -- 3.7.3 Supersonic flow over a rounded concave corner -- 3.7.4 Reflected shocks and shock interactions -- 3.7.5 Mach reflection -- 3.7.6 Detached oblique shocks -- 3.7.7 Prandtl-Meyer theory
 - Chapter 4 Gas Dynamics of Wet Steam -- 4.1 Compressible Flow of Wet Steam -- 4.1.1 Clausius-Clapeyron equation -- 4.1.2 Adiabatic exponent -- 4.2 Conservation Equations for Wet Steam -- 4.2.1 Relaxation times -- 4.2.2 Conservation equations in their working form -- 4.2.3 Sound speeds -- 4.3 Relaxation Zones -- 4.3.1 Type I wave -- 4.3.2 Type II wave -- 4.3.3 Type III wave -- 4.3.4 Combined relaxation -- 4.3.5 Flow in a variable area nozzle -- 4.4 Shocks in Wet Steam -- 4.4.1 Evaporation in the flow after the shock -- 4.5 Condensation Shocks -- 4.5.1 Jump conditions across a condensation shock -- Chapter 5 Principles of Turbomachine Analysis -- 5.1 Velocity Triangles -- 5.2 Moment of Momentum Balance -- 5.3 Energy Transfer in Turbomachines -- 5.3.1 Trothalpy and specific work in terms of velocities -- 5.3.2 Degree of reaction -- 5.4 Utilization -- 5.5 Scaling and Similitude -- 5.5.1 Similitude -- 5.5.2 Incompressible flow -- 5.5.3 Shape parameter or specific speed and specific diameter -- 5.5.4 Compressible flow analysis -- 5.6 Performance Characteristics -- 5.6.1 Compressor performance map -- 5.6.2 Turbine performance map -- Chapter 6 Steam Turbines -- 6.1 Introduction -- 6.2 Impulse Turbines -- 6.2.1 Single‐stage impulse turbine -- 6.2.2 Pressure compounding -- 6.2.3 Blade shapes -- 6.2.4 Velocity compounding -- 6.3 Stage with Zero Reaction -- 6.4 Loss Coefficients -- Chapter 7 Axial Turbines -- 7.1 Introduction -- 7.2 Turbine Stage Analysis -- 7.3 Flow and Loading Coefficients and Reaction Ratio -- 7.3.1 Fifty percent (50%) stage -- 7.3.2 Zero percent (0%) reaction stage -- 7.3.3 Off‐design operation -- 7.3.4 Variable axial velocity -- 7.4 Three‐Dimensional Flow and Radial Equilibrium -- 7.4.1 Free vortex flow -- 7.4.2 Fixed blade angle -- 7.4.3 Constant mass flux -- 7.5 Turbine Efficiency and Losses -- 7.5.1 Soderberg loss coefficients
 - 7.5.2 Stage efficiency -- 7.5.3 Stagnation pressure losses -- 7.5.4 Performance charts -- 7.5.5 Zweifel correlation -- 7.5.6 Further discussion of losses -- 7.5.7 Ainley-Mathieson correlation -- 7.5.8 Secondary loss -- 7.6 Multistage Turbine -- 7.6.1 Reheat factor in a multistage turbine -- 7.6.2 Polytropic or small‐stage efficiency -- Chapter 8 Axial Compressors -- 8.1 Compressor Stage Analysis -- 8.1.1 Stage temperature and pressure rise -- 8.1.2 Analysis of a repeating stage -- 8.2 Design Deflection -- 8.2.1 Compressor performance map -- 8.3 Radial Equilibrium -- 8.3.1 Modified free vortex velocity distribution -- 8.3.2 Velocity distribution with zero‐power exponent -- 8.3.3 Velocity distribution with first‐power exponent -- 8.4 Diffusion Factor -- 8.4.1 Momentum thickness of a boundary layer -- 8.5 Efficiency and Losses -- 8.5.1 Efficiency -- 8.5.2 Parametric calculations -- 8.6 Cascade Aerodynamics -- 8.6.1 Blade shapes and terms -- 8.6.2 Blade forces -- 8.6.3 Other losses -- 8.6.4 Diffuser performance -- 8.6.5 Flow deviation and incidence -- 8.6.6 Multi‐stage compressor -- 8.6.7 Compressibility effects -- 8.6.8 Design of a compressor -- Chapter 9 Centrifugal Compressors and Pumps -- 9.1 Compressor Analysis -- 9.1.1 Slip factor -- 9.1.2 Pressure ratio -- 9.2 Inlet Design -- 9.2.1 Choking of the inducer -- 9.3 Exit Design -- 9.3.1 Performance characteristics -- 9.3.2 Diffusion ratio -- 9.3.3 Blade height -- 9.4 Vaneless Diffuser -- 9.5 Centrifugal Pumps -- 9.5.1 Specific speed and specific diameter -- 9.6 Fans -- 9.7 Cavitation -- 9.8 Diffuser and Volute Design -- 9.8.1 Vaneless diffuser -- 9.8.2 Volute design -- Chapter 10 Radial Inflow Turbines -- 10.1 Turbine Analysis -- 10.2 Efficiency -- 10.3 Specific Speed and Specific Diameter -- 10.4 Stator Flow -- 10.4.1 Loss coefficients for stator flow