Medical Image Computing and Computer Assisted Intervention - MICCAI 2021 24th International Conference, Strasbourg, France, September 27-October 1, 2021, Proceedings, Part IV

The eight-volume set LNCS 12901, 12902, 12903, 12904, 12905, 12906, 12907, and 12908 constitutes the refereed proceedings of the 24th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2021, held in Strasbourg, France, in September/October 2021.* The 531 r...

Full description

Saved in:
Bibliographic Details
Main Authors de Bruijne, Marleen, Cattin, Philippe C, Cotin, Stéphane, Padoy, Nicolas, Speidel, Stefanie, Zheng, Yefeng, Essert, Caroline
Format eBook
LanguageEnglish
Published Cham Springer International Publishing AG 2021
Springer International Publishing
Edition1
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783030872014
3030872017

Cover

Table of Contents:
  • 3 Experiments and Results -- 3.1 Implementation Details -- 3.2 Validation of Registration -- 3.3 Validation of Internal Probabilistic Deformation Model -- 4 Discussion and Conclusion -- References -- Learning Dual Transformer Network for Diffeomorphic Registration -- 1 Introduction -- 2 Proposed Method -- 2.1 Volumetric Image Embedding -- 2.2 Dual Transformer -- 2.3 Diffeomorphic Registration -- 2.4 Unsupervised Learning -- 3 Experiments -- 3.1 Qualitative Assessment -- 4 Conclusion -- References -- Construction of Longitudinally Consistent 4D Infant Cerebellum Atlases Based on Deep Learning -- 1 Introduction -- 2 Method -- 2.1 Deformable Atlas Construction Network (DACN) -- 2.2 Affine Atlas Rescaling Network (AARN) -- 3 Experiments -- 4 Conclusion -- References -- Nesterov Accelerated ADMM for Fast Diffeomorphic Image Registration -- 1 Introduction -- 2 Diffeomorphic Image Registration -- 3 Nesterov Accelerated ADMM -- 4 Experimental Results -- 5 Conclusion -- References -- Spectral Embedding Approximation and Descriptor Learning for Craniofacial Volumetric Image Correspondence -- 1 Introduction -- 2 Method -- 2.1 Volumetric Image Descriptor -- 2.2 Spectral Embedding Approximation -- 2.3 Spectral Map-Based Correspondence -- 3 Experiments -- 3.1 Qualitative Assessment -- 4 Conclusion -- References -- A Deep Network for Joint Registration and Parcellation of Cortical Surfaces -- 1 Introduction -- 2 Method -- 2.1 Network Architecture -- 2.2 Loss Functions -- 2.3 Training Strategy -- 3 Experiments and Results -- 3.1 Experimental Setting -- 3.2 Results -- 4 Conclusion -- References -- 4D-Foot: A Fully Automated Pipeline of Four-Dimensional Analysis of the Foot Bones Using Bi-plane X-Ray Video and CT -- 1 Introduction -- 2 Method -- 2.1 Overview of the Proposed Pipeline -- 2.2 Automated Segmentation and Landmark Detection
  • Adversarial Domain Feature Adaptation for Bronchoscopic Depth Estimation
  • Multimodal Sensing Guidewire for C-Arm Navigation with Random UV Enhanced Optical Sensors Using Spatio-Temporal Networks -- 1 Introduction -- 2 Materials and Methods -- 2.1 Device Fabrication with UV Enhanced Random Gratings -- 2.2 Event Trajectory Generation of Wavelength Data -- 2.3 Shape and Flow Networks -- 2.4 Refinement Network -- 2.5 Implementation Details -- 3 Results -- 3.1 Experimental Setup and Training Data -- 3.2 Synthetic and In-Vivo Experiments -- 4 Conclusion -- References -- Image-to-Graph Convolutional Network for Deformable Shape Reconstruction from a Single Projection Image -- 1 Introduction -- 2 Methods -- 2.1 Dataset and Problem Definition -- 2.2 Image-to-Graph Convolutional Network -- 2.3 Loss Functions -- 3 Experiments -- 4 Conclusion -- References -- Class-Incremental Domain Adaptation with Smoothing and Calibration for Surgical Report Generation -- 1 Introduction -- 2 Proposed Method -- 2.1 Preliminaries -- 2.2 Feature Extraction -- 2.3 Captioning Model -- 3 Experiments -- 3.1 Dataset -- 3.2 Implementation Details -- 4 Results and Evaluation -- 5 Discussion and Conclusion -- References -- Real-Time Rotated Convolutional Descriptor for Surgical Environments -- 1 Introduction -- 2 Related Works -- 3 Method -- 3.1 Network Structure -- 3.2 Matching -- 3.3 Model Training -- 4 Experiments -- 4.1 Model Accuracy -- 4.2 Model Speed -- 5 Conclusion -- References -- Surgical Instruction Generation with Transformers -- 1 Introduction -- 2 Methodology -- 2.1 Encoder-Decoder with Transformer Backbone -- 2.2 Reinforcement Learning -- 3 Evaluation -- 3.1 Experimental Settings -- 3.2 Implementation and Training Details -- 4 Results and Discussion -- 4.1 Comparison with the State-of-the-Art -- 4.2 Effects of Reinforcement Learning -- 4.3 Limitations and Challenges -- 5 Conclusion -- References
  • Intro -- Preface -- Organization -- Contents - Part IV -- Image Registration -- Medical Image Registration Based on Uncoupled Learning and Accumulative Enhancement -- 1 Introduction -- 2 Method -- 2.1 Overview -- 2.2 Uncoupled Spatial Encoder -- 2.3 Accumulative Warping Enhancement -- 2.4 Multi-window Loss -- 3 Experiments and Results -- 4 Conclusion -- References -- Atlas-based Segmentation of Intracochlear Anatomy in Metal Artifact Affected CT Images of the Ear with Co-trained Deep Neural Networks -- 1 Introduction -- 2 Method -- 2.1 Data -- 2.2 Learning to Register the Artifact-Affected Images and the Atlas Image with Assistance of the Paired Artifact-Free Images -- 2.3 Network Architecture -- 2.4 Evaluation -- 3 Experiments -- 4 Results -- 5 Summary -- References -- Learning Unsupervised Parameter-Specific Affine Transformation for Medical Images Registration*-8pt -- 1 Introduction -- 2 Methods -- 2.1 Parameter-Specific Affine Transformation -- 2.2 Cross-stitch Affine Network -- 3 Experiments and Results -- 4 Conclusion -- References -- Conditional Deformable Image Registration with Convolutional Neural Network -- 1 Introduction -- 2 Methods -- 2.1 Conditional Deformable Image Registration -- 2.2 Conditional Image Registration Module -- 2.3 Self-supervised Learning -- 3 Experiments -- 4 Conclusion -- References -- A Deep Discontinuity-Preserving Image Registration Network -- 1 Introduction -- 2 Method -- 3 Experiments and Results -- 4 Conclusion -- References -- End-to-end Ultrasound Frame to Volume Registration -- 1 Introduction -- 2 Problem Definition -- 3 Method -- 3.1 End-to-end Slice-to-Volume Registration -- 3.2 Implementation Details -- 4 Experiments and Results -- 4.1 Datasets and Experimental Setting -- 4.2 Results Evaluation -- 5 Conclusions -- References -- Cross-Modal Attention for MRI and Ultrasound Volume Registration
  • 2.3 2D-3D Registration Incorporating Landmark Reprojection Error -- 3 Experiment and Results -- 3.1 Experimental Materials -- 3.2 Evaluation of Automated Segmentation and Landmark Detection -- 3.3 Evaluation of 2D-3D Registration Using Bone Phantom -- 3.4 Evaluation of 2D-3D Registration Using Images of Real Subjects -- 4 Discussion and Conclusion -- References -- Equivariant Filters for Efficient Tracking in 3D Imaging -- 1 Introduction -- 1.1 Previous Work -- 2 Method -- 2.1 Construction of Equivariant Convolutional Filters -- 2.2 Registration of Equivaritant Filters -- 2.3 Loss Functions and Implementations -- 3 Experiments -- 4 Discussion and Conclusion -- References -- Revisiting Iterative Highly Efficient Optimisation Schemes in Medical Image Registration -- 1 Introduction/Motivation -- 2 Method -- 3 Experiments -- 3.1 Datasets -- 4 Results -- 5 Discussion and Conclusion -- References -- Multi-scale Neural ODEs for 3D Medical Image Registration -- 1 Introduction -- 2 Method -- 2.1 Learn Registration Optimizer via Neural ODEs -- 2.2 Pretrained Feature Extraction Network -- 3 Experiments and Results -- 3.1 Experiment Setup -- 3.2 Results -- 4 Discussions and Conclusions -- References -- Image-Guided Interventions and Surgery -- Self-supervised Generative Adversarial Network for Depth Estimation in Laparoscopic Images -- 1 Introduction -- 2 Methodology -- 2.1 Overview -- 2.2 Network Architecture -- 2.3 Training Losses -- 3 Experiments and Results -- 3.1 Dataset -- 3.2 Evaluation Metrics, Baseline, and Implementation Details -- 3.3 Results -- 4 Conclusions -- References -- Personalized Respiratory Motion Model Using Conditional Generative Networks for MR-Guided Radiotherapy -- 1 Introduction -- 2 Methods -- 2.1 Model Building -- 2.2 Model Personalization and Application -- 3 Experimental Setup and Results -- 4 Conclusion -- References
  • 1 Introduction -- 2 Method -- 2.1 Cross-Modal Attention -- 2.2 Feature Extraction and Deep Registration Modules -- 2.3 Implementation Details -- 3 Experiments and Results -- 3.1 Dataset and Preprocessing -- 3.2 Experimental Results -- 4 Conclusion -- References -- Bayesian Atlas Building with Hierarchical Priors for Subject-Specific Regularization -- 1 Introduction -- 2 Background: Atlas Building with Fast LDDMM -- 3 Our Model: Bayesian Atlas Building with Hierarchical Priors -- 3.1 Model Inference -- 4 Experimental Evaluation -- 5 Conclusion -- References -- SAME: Deformable Image Registration Based on Self-supervised Anatomical Embeddings -- 1 Introduction -- 2 Method -- 2.1 Self-supervised Anatomical Embedding (SAM) -- 2.2 SAM-Affine and SAM-Coarse -- 2.3 SAM-VoxelMorph -- 3 Experiments -- 4 Conclusion -- References -- Weakly Supervised Registration of Prostate MRI and Histopathology Images -- 1 Introduction -- 2 Methods -- 2.1 Data Acquisition -- 2.2 Overview of Proposed Method -- 2.3 Registration Neural Network -- 2.4 Transformation Model -- 2.5 Loss Functions -- 2.6 Previous Method -- 2.7 Evaluation Metrics -- 2.8 Experimental Design -- 3 Results -- 3.1 Qualitative Results -- 3.2 Quantitative Results -- 4 Discussion and Conclusion -- References -- 4D-CBCT Registration with a FBCT-derived Plug-and-Play Feasibility Regularizer -- 1 Introduction -- 2 Method -- 2.1 Overview -- 2.2 Feasibility Descriptor of Respiratory Motion -- 2.3 Unsupervised Learning for DVF Estimation -- 3 Experiments and Results -- 3.1 Training of the Feasibility Descriptor -- 3.2 Training of the DVF Inference Network -- 3.3 Evaluation -- 3.4 Results -- 4 Discussion and Conclusion -- References -- Unsupervised Diffeomorphic Surface Registration and Non-linear Modelling -- 1 Introduction -- 2 Methods -- 2.1 Registration Model -- 2.2 CVAE Network -- 2.3 Objective Function