Practical Rubber Rheology and Dynamic Properties
Practical Rubber Rheology and Dynamic Properties provides a unique overview of rubber rheology from a practical perspective. Targeted at rubber practitioners in the rubber industry, it focuses largely on applications of rubber rheology testing to solving industrial problems, rubber compound developm...
Saved in:
| Main Author | |
|---|---|
| Other Authors | |
| Format | Electronic eBook |
| Language | English |
| Published |
Munich, Germany :
Carl Hanser Verlag,
[2023]
|
| Edition | First edition. |
| Subjects | |
| Online Access | Full text |
| ISBN | 1569906181 9781569906187 9781569906170 |
| Physical Description | 1 online resource (387 pages) |
Cover
| LEADER | 00000cam a2200000Mi 4500 | ||
|---|---|---|---|
| 001 | kn-on1438987550 | ||
| 003 | OCoLC | ||
| 005 | 20240717213016.0 | ||
| 006 | m o d | ||
| 007 | cr cn||||||||| | ||
| 008 | 231021s2023 gw a o 001 0 eng d | ||
| 040 | |a SFB |b eng |e rda |e pn |c SFB |d OCLCO |d OCLKB |d EBLCP |d AUD | ||
| 020 | |a 1569906181 | ||
| 020 | |a 9781569906187 | ||
| 020 | |z 9781569906170 | ||
| 035 | |a (OCoLC)1438987550 |z (OCoLC)1402186824 | ||
| 100 | 1 | |a Dick, John S., |e author. | |
| 245 | 1 | 0 | |a Practical Rubber Rheology and Dynamic Properties / |c John S. Dick and Henry Pawlowski. |
| 250 | |a First edition. | ||
| 264 | 1 | |a Munich, Germany : |b Carl Hanser Verlag, |c [2023] | |
| 264 | 4 | |c ©2023 | |
| 300 | |a 1 online resource (387 pages) | ||
| 336 | |a text |b txt |2 rdacontent | ||
| 337 | |a computer |b c |2 rdamedia | ||
| 338 | |a online resource |b cr |2 rdacarrier | ||
| 505 | 0 | |a Intro -- The Authors -- Preface -- Contents -- 1 Overview of Rubber Rheology and Dynamic Property Tests -- 1.1 Introduction to the Uniqueness of Rubber Rheology -- 1.2 Basic Tensile Testing -- 1.3 Hardness Testing -- 1.4 Density -- 1.5 Mooney Viscosity -- 1.6 ODR Curemeter -- 1.7 Capillary Rheometer -- 1.8 Moving Die Rheometer (MDR) -- 1.9 Rubber Process Analyzer (RPA) -- 1.10 Dynamic Mechanical Analyzer (DMA) -- 1.11 Flex Fatigue Testers -- 1.12 Flexometer Delta T -- 1.13 Measuring Dispersion -- 1.14 Other Relevant Rubber Tests -- 1.14.1 Compression Plastimeters -- 1.14.2 Tear Properties -- 1.14.3 Electrical Conductivity Properties -- 1.14.4 Differential Scanning Calorimetry (DSC) -- 1.14.5 Thermogravimetric Analysis (TGA) -- 1.14.6 Fourier Transform Infrared Spectroscopy (FTIR) -- 1.14.7 Attenuated Total Reflectance (ATR) -- 1.14.8 Gel Permeation Chromatography (GPC) -- 1.14.9 Nuclear Magnetic Resonance Spectroscopy (NMR) -- 1.14.10 BET (Brunauer, Emmett, and Teller) Nitrogen Adsorption Surface Area Apparatus -- 1.14.11 Thermal Conductivity Meters -- 2 Mooney Viscometer -- 2.1 Description of the Mooney Viscometer -- 2.2 Mooney Tests -- 2.3 Mooney Viscosity -- 2.4 Measuring Mooney Scorch -- 2.5 Measuring Mooney Stress Relaxation -- 2.6 Delta Mooney Test for Oil Extended Emulsion SBR -- 2.7 Variable Speed Mooney -- 2.8 Limitations of the Mooney Viscometer -- 3 Capillary Rheometer -- 3.1 Introduction -- 3.2 Basic Types of Capillary Rheometers -- 3.3 Measurement of Viscosity with a Capillary Rheometer -- 3.4 Types of Capillary Rheometer Tests -- 3.4.1 Stability Test -- 3.4.2 Shear Rate Sweep -- 3.4.3 Measure of True Viscosity with Capillary Rheometers by Using Corrections -- 3.4.3.1 Bagley Correction -- 3.4.3.2 Rabinowitsch Correction -- 3.4.4 Capillary Rheometer Wall Slippage -- 3.5 Behavior of Non-Newtonian Materials. | |
| 505 | 8 | |a 3.6 Appearance of Capillary Rheometer Extrudate -- 3.7 Capillary Rheometry in Factory Problem Solving -- 3.8 Prediction of Factory Processability with Capillary Rheometers -- 3.9 Limitations of Capillary Rheometers in Rubber Testing -- 4 Curemeters -- 4.1 Oscillating Disc Rheometer -- 4.2 Moving Die Rheometer -- 4.3 ASTM D2084 and D5289 Data Points for Curemeters -- 4.4 Dynamic Properties Measured with an MDR -- 4.5 ASTM and ISO Standards for Curemeters and the Selection of Test Conditions -- 4.6 The RPA as a Curemeter -- 4.6.1 Description of the RPA as a Curemeter -- 4.6.2 Using RPA Dynamic Data for Analyzing Cure Curves -- 4.6.2.1 tMAX S" during Cure (Time to S" Peak) -- 4.6.2.2 S' and S" due to Crosslink Density -- 4.6.2.3 S' and S" due to Filler Loading -- 4.6.3 Effect of Oil -- 5 Viscoelastic Characterization of Rubber -- 5.1 Introduction to the Viscoelastic Property -- 5.2 Pure Elasticity -- 5.3 Pure Viscosity -- 5.4 Modeling Viscosity -- 5.5 Viscoelastic Properties -- 5.6 Measurement of Viscoelastic Properties with Sinusoidal Deformation -- 5.7 Applications for Viscoelastic Properties -- 5.8 Instruments with Multiple Test Capabilities -- 5.9 RPA Test Conditions -- 5.10 The Advantages of the RPA over Scientific DMAs -- 5.11 The Basics of Measuring and Calculating Dynamic Moduli -- 5.12 The Basics of Measuring and Calculating Dynamic Viscosity -- 5.13 Compliance -- 5.14 Extension/Compression Modulus and Compliance -- 5.15 Spring Rate Constants and Damping Coefficients -- 5.16 Time Temperature Superpositioning (TTS) -- 5.17 Statistical Evaluation of Rheometers -- 6 Types of Rubber RPA Rheological Tests -- 6.1 Summary of RPA Rheological Data -- 6.2 Types of RPA Rheological Subtests -- 6.2.1 Timed -- 6.2.2 Temperature Sweep -- 6.2.3 VTA (Thermal Ramp) -- 6.2.4 Frequency Sweep -- 6.2.5 Strain Sweep: Low -- 6.2.6 Strain Sweep: High -- 6.2.7 Matrix. | |
| 505 | 8 | |a 8.4.1 Effects of Silanization -- 8.4.2 Effects of Silica Surface Area -- 8.4.3 Effects of Silica Loading -- 8.4.4 Recovery of the Silica Network after Destruction -- 8.4.5 Special Role of Structure for Silica -- 8.5 Effects of Fully Reinforcing Fillers on the Cox-Merz Correlation -- 8.6 Effects of Filler Type and Concentration on Shear Thinning Profiles -- 8.7 Effects of Filler Room Temperature Storage on Formation of Bound Rubber and Rheology of Filled Rubber Compounds -- 9 Measuring Quality of Mix and Processability -- 9.1 Dispersion of Fillers during Mixing -- 9.2 Mastication of Elastomers during Mixing -- 9.3 Rheological Changes during Mixing -- 9.4 Optimal Rheological Conditions for Mix Quality Measurement -- 9.5 State of Mix and Percent Dispersion -- 9.6 Effect of Oil on Rubber Mixing -- 9.7 Effect of Phase Mixing -- 9.8 Special Test Conditions for Measuring State of Mix -- 9.8.1 Mooney Viscosity -- 9.8.2 RPA at ±100% Strain (ASTM D6204 Part B) -- 9.8.3 RPA Payne Effect Plateau (ASTM D8059) -- 9.8.4 RPA Stress Relaxation (ASTM D6048) -- 9.8.5 Special Reflective Microscope with Computer Analysis (ASTM D7723) -- 9.9 Scorch Safety Measurements -- 9.9.1 Traditional Mooney Scorch -- 9.9.2 Traditional Curemeter Scorch Measurements -- 9.9.3 Dynamic Property Measurements of Scorch -- 9.9.4 Lower Cure Temperature Effects -- 9.9.5 Variable Temperature Measurements of Scorch -- 9.9.6 Optimizing Strain and Frequency Effects for Scorch Measurements -- 9.9.7 Effects of Controlled Stress Measurements on Scorch -- 9.10 Cure Rate Measurements -- 9.11 Work History vs. Heat History -- 9.12 State of Cure -- 9.13 Capillary Rheometer Viscosity vs. Dynamic Viscosity -- 9.14 Selecting Best Test Conditions for Factory Control -- 9.15 Using SPC Charts of Key Parameters -- 9.16 Downstream Processability Stages -- 9.16.1 Calendering -- 9.16.2 Extrusion -- 9.16.3 Curing. | |
| 505 | 8 | |a 10 After-Cure Dynamic Properties -- 10.1 Comparison of After-Cure Dynamic Properties and Product Performance -- 10.1.1 Tires -- 10.1.2 Automotive Isolators and Dampers -- 10.1.3 Sports Applications -- 10.1.4 Rubber Seals and Gaskets -- 10.1.5 Blowout Preventer -- 10.1.6 Conveyor Belts, Timing Belts, and Power Belts -- 10.2 Payne Effect for Cured Rubber Compounds -- 10.3 Mullins Effect for Cured Rubber Compounds -- 10.4 Low Strain vs. High Strain Measurements of Cured Vulcanizates -- 10.5 ASTM Standard Test Method Using RPA -- 10.6 Relation of Compression and Extension Dynamic Properties to Shear Measurements -- 11 Methods for Analyzing the Cure Reaction -- 11.1 Reaction Kinetics -- 11.1.1 The Reaction Rate Constant -- 11.1.2 Arrhenius Model -- 11.1.3 Order of Reaction (n) in Cure Kinetics -- 11.2 Applications of the Maximum Cure Rate (MCR) -- 11.3 Applications for the RPA Thermal Ramp -- 11.4 Concept of Cure Equivalents -- 11.5 Direct Measurement of Complex Non-Isothermal Cures -- Index. | |
| 500 | |a Includes index. | ||
| 506 | |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty | ||
| 520 | |a Practical Rubber Rheology and Dynamic Properties provides a unique overview of rubber rheology from a practical perspective. Targeted at rubber practitioners in the rubber industry, it focuses largely on applications of rubber rheology testing to solving industrial problems, rubber compound development, predicting changes in processability in the plant, quality assurance, and research and development. However, basic principles are covered as well. | ||
| 590 | |a Knovel |b Knovel (All titles) | ||
| 650 | 0 | |a Polymers. | |
| 650 | 0 | |a Thin films. | |
| 650 | 0 | |a Rubber. | |
| 650 | 0 | |a Rheology. | |
| 655 | 7 | |a elektronické knihy |7 fd186907 |2 czenas | |
| 655 | 9 | |a electronic books |2 eczenas | |
| 700 | 1 | |a Pawlowski, Henry. | |
| 776 | |z 1-56990-617-3 | ||
| 856 | 4 | 0 | |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpPRRDP002/practical-rubber-rheology?kpromoter=marc |y Full text |