Dielectric materials for energy storage and energy harvesting devices

As the demand for energy harvesting and storage devices grows, this book will be valuable for researchers to learn about the most current achievements in this sector. Sustainable development systems are centered on three pillars: economic development, environmental stewardship, and social. One of th...

Full description

Saved in:
Bibliographic Details
Other Authors Rajput, Shailendra (Editor), Parida, Sabyasachi (Editor), Sharma, Abhishek (Robotics engineer) (Editor), Sonika, Sonika (Editor)
Format Electronic eBook
LanguageEnglish
Published [United States] : River Publishers, [2023]
SeriesRiver Publishers series in energy sustainability and efficiency.
Subjects
Online AccessFull text
ISBN9788770040006
8770040001
1003811361
9781003811367
9781032630816
1032630817
9781003811381
1003811388
9788770040013
Physical Description1 online resource.

Cover

Table of Contents:
  • Preface xi List of Contributors xiii List of Figures xv List of Tables xxi List of Abbreviations xxiii 1 Dielectric Properties of Nanolayers for Next-generation Supercapacitor Devices 1 1.1 Introduction 2 1.2 Synthesis of 2D-NLs 3 1.2.1 Exfoliation process 4 1.2.2 CVD process 5 1.3 Dielectric Properties of 2D-NLs 6 1.4 Supercapacitors Application of 2D-NLs 9 1.5 Conclusion 13 References 15 2 Ferroelectrics: Their Emerging Role in Renewable Energy Harvesting 23 2.1 Introduction 24 2.2 Dielectric Materials 26 2.2.1 Classification of dielectrics 27 2.2.2 Piezoelectric 30 2.2.3 Pyroelectricity 34 2.3 Photovoltaic Solar Energy 41 2.4 Conclusion 47 References 48 3 Polymer Nanocomposite Material for Energy Storage Application 53 3.1 Introduction 54 3.2 Lithium-ion Battery 56 3.2.1 Components of LIBs 56 3.2.2 Working mechanism of LIB 58 3.3 Electrodes 60 3.3.1 Anode materials with drawbacks 60 3.3.2 Drawbacks of existing cathodes 62 3.3.3 Solution for existing drawback for electrode 64 3.3.4 Polymer nanocomposite 65 3.3.5 Si-PANI nanocomposite material for the anode 65 3.3.6 LiFeO2-PPy polymer nanocomposite for cathode 69 3.4 Separator 72 3.4.1 Types of membrane 73 3.4.2 Drawbacks in existing separators 73 3.4.3 Montmorillonite/polyaniline composite for separator 74 3.5 Conclusion 76 References 77 4 Carbon-based Polymer Composites as Dielectric Materials for Energy Storage 81 4.1 Introduction 82 4.2 Basic Structure of Capacitor 82 4.3 Types of Dielectric Materials 86 4.3.1 Dielectric materials based on ceramics 86 4.3.2 Dielectric glass ceramics 88 4.3.3 Polymers as dielectric materials 89 4.3.4 Polymer composites/nanocomposites as dielectrics 90 4.3.5 Carbon-based polymer composites/nanocomposites as dielectric materials 92 4.4 Challenges Faced by Polymer Composites-based Dielectric Materials 96 4.5 Various Processing Techniques for Fabrication of Carbon-based Polymer Dielectric Composites 96 4.5.1 Curing (microwave/thermal) method 97 4.5.2 Melt-mixing method 97 4.5.3 Viscosity method 98 4.5.4 Core-shell method 98 4.6 Polymer Composites/Nanocomposites with 3D Segregated Filler Network Structure 99 4.7 Use of Hybrid Nanofillers 99 4.8 Blending of Carbon-based Fillers and Ceramics/Ferroelectrics in Polymer Composites 100 4.9 Simultaneous Use of Carbon-based Fillers and Other Nanoparticles 101 4.10 Conclusion 102 Acknowledgements 103 References 103 5 Role of 2D Dielectric Materials for Energy-harvesting Devices and their Application for Energy Improvements 113 5.1 Introduction 114 5.2 Some Examples of 2D Materials 118 5.3 Crystal Structure of 2D Materials 120 5.4 Role of 2D Dielectric Materials for Energy-harvesting Devices 120 5.5 Applications for 2d Dielectric Materials for Energy Harvesting 124 5.5.1 Piezoelectricity in 2D materials 125 5.5.2 Triboelectricity in 2D materials 125 5.5.3 Flexible/stretchable electronics 126 5.5.4 Supercapacitors 126 5.5.5 Batteries 126 5.5.6 Hydrogen storage 126 5.5.7 Bioimaging 127 5.5.8 Drug delivery 127 5.5.9 Cancer therapy 128 5.5.10 Biosensors 128 5.5.11 Battery electrodes 128 5.5.12 Catalysis 128 5.5.13 Hydrogen storage 128 5.5.14 Gas sensors 129 5.6 Future Aspects 129 References 130 6 Effect of Lanthanide Substitution on the Dielectric, Ferroelectric and Energy-storage Properties of PZT Ceramics 137 6.1 Introduction 138 6.2 Materials and Methodology 139 6.3 Results and Discussion 140 6.3.1 Structural analysis 140 6.3.2 Microstructural analysis 140 6.3.3 Dielectric analysis 141 6.3.4 Ferroelectric and energy-storage analysis 147 6.3.5 AC conductivity analysis 149 6.4 Conclusion 152 References 152 7 Ferroelectric Properties of Terbium-doped Multiferroics 157 7.1 Introduction 157 7.1.1 Classification of ferroelectrics 158 7.1.2 Multiferroic and their importance 160 7.2 Materials and Methods 164 7.3 Result and Discussion 166 7.3.1 Structural studies 166 7.3.2 Microstructural studies 167 7.3.3 Dielectric study 169 7.3.4 Electrical conductivity 173 7.4 Conclusion 177 References 177 8 Advances in Sr and Co Doped Lanthanum Ferrite Perovskites as Cathode Application in SOFCs 183 8.1 Introduction 184 8.2 The SOFC Cathode 186 8.3 Review and Discussions 187 8.3.1 Lanthanum Ferrite based perovskites 187 8.3.2 Lanthanum strontium ferrite systems 188 8.3.3 Lanthanum strontium cobalt ferrites system 190 8.4 Conclusion 199 Acknowledgements 200 References 200 9 Multiferroics: Multifunctional Material 207 9.1 Introduction 208 9.2 Primary Ferroics 209 9.3 Ferroelectrics 209 9.3.1 Ferroelectric phase transformations 211 9.3.2 Ferroelectric hysteresis loop 213 9.3.3 Perovskite ferroelectrics 215 9.4 Proper and Improper Ferroelectrics 217 9.5 Magnetism and Magnetically Ordered States 217 9.5.1 Ferromagnetic hysteresis 219 9.5.2 Exchange interaction, anisotropy and magnetic order in oxides 220 9.6 Ferroics and Multiferroics 222 9.6.1 Coupling of order parameters and magnetoelectric multiferroics 223 9.6.2 Requirements and difficulties in achieving multiferroics 225 9.6.3 Mechanisms to achieve multiferroics 226 9.7 Conclusion 228 References 228 Index 237 About the Editors 239.