Surface modification and functionalization of ceramic composites
Surface Modification and Functionalization of Ceramic Composites is intended for both experts and beginners, allowing them to have an extended overview of recent progress in the evolution of surface modification methods and functionalization for ceramic composites. The book provides a detailed summa...
Saved in:
Other Authors: | , |
---|---|
Format: | eBook |
Language: | English |
Published: |
Amsterdam, Netherlands ; Oxford, United Kingdom ; Cambridge MA :
Elsevier,
[2023]
|
Series: | Elsevier series on advanced ceramic materials
|
Subjects: | |
ISBN: | 9780323855730 0323855733 9780323858830 |
Physical Description: | 1 online resource. |
LEADER | 11796cam a22004337i 4500 | ||
---|---|---|---|
001 | kn-on1376283776 | ||
003 | OCoLC | ||
005 | 20240717213016.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 230417s2023 ne o 000 0 eng d | ||
040 | |a OPELS |b eng |e rda |e pn |c OPELS |d YDX |d OCLCF |d OCLCO |d DXU |d OCLCO | ||
020 | |a 9780323855730 |q electronic book | ||
020 | |a 0323855733 |q electronic book | ||
020 | |z 9780323858830 |q (print) | ||
035 | |a (OCoLC)1376283776 | ||
245 | 0 | 0 | |a Surface modification and functionalization of ceramic composites / |c edited by Rajan Jose, Fabian Ezema. |
264 | 1 | |a Amsterdam, Netherlands ; |a Oxford, United Kingdom ; |a Cambridge MA : |b Elsevier, |c [2023] | |
300 | |a 1 online resource. | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 0 | |a Elsevier series on advanced ceramic materials | |
506 | |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty | ||
520 | |a Surface Modification and Functionalization of Ceramic Composites is intended for both experts and beginners, allowing them to have an extended overview of recent progress in the evolution of surface modification methods and functionalization for ceramic composites. The book provides a detailed summary of the various techniques that are currently available, along with an evaluation of the costs involved. Information on the relationship between surface properties and function is also discussed. There is also an additional section on commercial and industrial applications, including biomedical, sensing and energy. The book will be a valuable reference resource for researchers and an instructive and stimulating text for postgraduate students who want to enhance their knowledge on novel materials and surface modification and functionalization of ceramic composites. | ||
505 | 0 | |a Intro -- Surface Modification and Functionalization of Ceramic Composites -- Copyright -- Dedication -- Contents -- Contributors -- Preface -- Chapter 1: Introduction: Review of the status of modification and functionalization of ceramic composites, progress, and p ... -- 1.1. Introduction -- 1.2. Classifications of ceramics -- 1.2.1. Classifications of ceramic composite-based material -- 1.2.1.1. Ceramics/polymer composite -- 1.2.2. Classifications of ceramic composites based on scale -- 1.2.2.1. Nanocomposites -- 1.2.2.2. Biocomposites -- 1.2.3. Classifications of ceramic composites based on reinforcements -- 1.2.3.1. Ceramics/fiber -- 1.2.3.2. Ceramics/particle -- 1.3. Ceramic composites fabrication techniques -- 1.3.1. Open molding -- 1.3.2. Hand lay-up -- 1.3.3. Spray up -- 1.3.4. Closed molding -- 1.3.5. Vacuum bag molding -- 1.3.6. Cast polymer molding -- 1.3.7. Gel coated cultured stone molding -- 1.3.8. Solid surface molding -- 1.3.9. Engineered stone molding -- 1.4. Conclusion -- References -- Chapter 2: Surface modification of zirconia ceramics using polymer surface modification and functionalization of ceramics ... -- 2.1. Introduction -- 2.2. Surface modifications of zirconia ceramics -- 2.3. Conclusion -- References -- Chapter 3: Surface modification and functionalization of ceramic composite using self-assembled monolayer and graft polyme ... -- 3.1. Introduction -- 3.2. Self-assembled monolayers (SAMs) -- 3.2.1. Gibbs monolayer -- 3.2.2. Langmuir monolayer -- 3.3. Structure of SAMs -- 3.4. SAMs preparation -- 3.4.1. Substrates for SAM formation -- 3.4.2. Preparation of substrates for SAM -- 3.4.3. Steps involved in SAM preparation -- 3.4.3.1. Solution deposition -- 3.4.3.2. Gas phase deposition -- 3.5. SAMs characterization -- 3.6. Kinetics involved in SAMs formation -- 3.7. SAMs growth rate. | |
505 | 8 | |a 3.7.1. Growth rate dependence on concentration -- 3.7.2. Growth rate dependence on the nature of solvent -- 3.7.3. Growth rate dependence on temperature -- 3.7.4. Growth rate dependence on water content -- 3.8. Factors affecting monolayer embedded functional groups reactivity -- 3.9. Defects in SAMs -- 3.10. SAMs patterning -- 3.11. Advantages of SAMs -- 3.12. Graft polymerization -- 3.13. Strategies involved in graft polymerization -- 3.13.1. ``Grafting to´´ method -- 3.13.2. ``Grafting from´´ -- 3.13.3. ``Grafting through´´ -- 3.14. Steps involved in the surface modification by graft polymerization -- 3.14.1. Grafted surfaces creation -- 3.14.2. Types of graft polymerization -- 3.14.2.1. Chemical graft polymerization -- 3.14.2.2. Plasma-induced graft polymerization -- 3.14.2.3. UV-induced graft polymerization -- 3.14.2.4. High-energy-induced graft polymerization -- 3.14.3. Surface modification -- 3.14.3.1. Pretreatment -- 3.14.3.2. Graft polymerization reaction -- 3.14.4. Characterization of grafted surfaces -- 3.15. Structure of grafted surfaces -- 3.16. Factors affecting grafting efficiency -- 3.17. Problems encountered in graft polymerization -- 3.18. Advantages of graft polymerization -- 3.19. Conclusion -- References -- Chapter 4: Improving the catalytic properties of ceramics-CNT composites by carbon nanotubes (CNTs) surface modification -- 4.1. Introduction -- 4.2. Experimental -- 4.3. Results and discussion -- 4.3.1. XRD analysis -- 4.3.2. SEM analysis -- 4.3.3. TEM profile -- 4.3.4. Conductivity analysis -- 4.3.5. Gas sensing applications -- 4.3.6. PL analysis -- 4.3.7. Raman analysis -- 4.4. Conclusions -- References -- Chapter 5: Effect of surface modification on the dielectric properties of mixed transition metal oxides ceramics composite -- 5.1. Introduction -- 5.2. Structures of MTMOs ceramics. | |
505 | 8 | |a 5.2.1. Dielectric properties of MTMOs ceramics -- 5.2.2. Methods of MTMOs synthesis -- 5.2.2.1. Sol-gel technique -- 5.2.2.2. Hydrothermal/solvothermal synthesis -- 5.2.2.3. Chemical precipitation method -- 5.2.2.4. Microwave-assisted technique -- 5.2.2.5. Electrodeposition technique -- 5.2.2.6. Combustion synthesis -- 5.3. Basis of surface modification and its effect in dielectric properties of MTMO ceramics composites -- 5.4. Conclusion -- References -- Chapter 6: Enhancement of ceramics applications using a surface modification of coated various deposition techniques in ce ... -- 6.1. Introduction -- 6.2. Concepts of ceramics coatings -- 6.2.1. Classifications of coating techniques -- 6.2.1.1. Gaseous state -- Chemical vapor deposition (CVD) technique -- Physical vapor deposition (PVD) technique -- Ion beam-assisted deposition (IBAD) -- 6.2.1.2. Liquid (solution) state -- Chemical solution techniques -- Sol-gel method -- Chemical bath deposition (CBD) technique -- Electrochemical deposition -- Electrophoretic coating technique -- 6.2.1.3. Molten/semimolten state -- Laser -- Thermal spraying -- Wielding -- 6.3. Conclusion -- Acknowledgments -- References -- Chapter 7: Effects of surface modification (surface treatment) on friction and surface abrasion of ceramic composites -- 7.1. Introduction -- 7.2. Ceramic composites -- 7.2.1. The matrix phase of ceramic composites -- 7.2.2. The reinforcing phase of ceramic composites -- 7.2.3. The interfacial domain in ceramic composites -- 7.3. Friction and abrasion of ceramic composite system -- 7.3.1. Abrasive wear -- 7.3.2. Adhesive wear -- 7.3.3. Delamination wear -- 7.3.4. Corrosive or tribochemical wear -- 7.4. Surface modification of ceramic composites -- 7.4.1. Surface modification of C/SiC ceramic composite using liquid melt infiltration process (LMI) for enhanced tribolog. | |
505 | 8 | |a 7.4.2. Ceramic composite coating of titanium alloy grade 5 (Ti-6Al-4V) using tungsten inert gas (TIG) torch surface melti ... -- 7.4.3. Surface modification of alumina via wet chemical route: Coating with aqueous solution of zirconium chloride and th ... -- 7.4.4. Zirconium diboride-alumina (ZrB2/Al2O3) composite modified using organosilanes -- 7.4.5. Rice husk ceramic particles modified using electroless plating deposition method -- 7.5. Conclusions -- References -- Chapter 8: Synthesis, characterization, and dielectric properties of surface-functionalized ferroelectric ceramic composites -- 8.1. Introduction -- 8.2. Materials for the functionalization of ferroelectric ceramics -- 8.2.1. Organic functionalization -- 8.2.2. Inorganic functionalization or doping -- 8.3. Interfacial interaction of functionalized ferroelectric ceramics -- 8.4. Fabrication of ferroelectric ceramic-polymer-based composites -- 8.4.1. Polymerization method -- 8.4.2. Solution mixing method -- 8.4.3. Melt compounding method -- 8.5. Characterization of ferroelectric ceramic-polymer-based composites -- 8.6. Dielectric properties of ferroelectric ceramic-polymer-based composites -- 8.6.1. Influence of functionalized ferroelectric ceramic particles on dielectric properties -- 8.6.2. Functionalized ferroelectric ceramic particle dispersion and interfacial polarization on dielectric properties -- 8.6.3. Effect of ferroelectric ceramic particles structural dimensions on dielectric properties -- 8.6.4. Influence of functionalization materials on dielectric properties of ferroelectric ceramic-based composites -- 8.6.5. Accounting for the matrix on the dielectric properties of ferroelectric ceramic-based composites -- 8.7. Challenges, recommendations, and applications -- 8.8. Conclusion -- References. | |
505 | 8 | |a Chapter 9: Surface modification and functionalization of ceramics composites with cellulose materials -- 9.1. Introduction -- 9.1.1. Ceramics -- 9.1.2. Types of ceramics -- 9.1.3. General properties of ceramics -- 9.2. Cellulose -- 9.2.1. Types of cellulose -- 9.2.2. Properties of cellulose -- 9.3. Cellulose-reinforced ceramic composites -- 9.3.1. Characteristics of cellulose-modified ceramic composites -- 9.4. Uses, techniques, and challenges of surface modification of ceramics with cellulose -- 9.5. Prospects of cellulose-reinforced ceramic composites -- 9.6. Conclusion and recommendations -- 9.6.1. Conclusion -- 9.6.2. Recommendations -- Acknowledgment -- References -- Chapter 10: Application of upconversion nanoparticles (UCNPs) as nano-ceramic materials for bioimaging -- 10.1. Introduction: Upconversion nanoparticles (UCNPs) -- 10.1.1. Ceramics -- 10.1.2. Ceramic composites -- 10.2. Upconversion (UC) process -- 10.3. Lanthanides-based upconversion nanoparticles (UCNPs) -- 10.4. Components of lanthanide upconversion nanoparticles -- 10.5. Synthesis techniques -- 10.5.1. Thermal decomposition -- 10.5.2. Co-precipitation -- 10.5.3. Sol-gel -- 10.5.4. Microemulsion -- 10.5.5. Microwave-assisted method -- 10.5.6. Hydrothermal method -- 10.5.7. Solvothermal method -- 10.6. Surface modification and functionalization -- 10.7. Applications of upconversion nanoparticles as ceramic composites -- References -- Chapter 11: Synthesis and fabrication of cathodic electrophoretic deposition of ceramic materials and composites using -- 11.1. Introduction -- 11.2. Electrophoretic deposition of ceramic materials -- 11.3. Electrophoretic deposition of ceramic materials along with their composites using extracted dyes from different plants -- 11.4. Catechol family of dyes for EPD -- 11.5. Cathodic EPD applying celestine blue dye -- 11.6. Conclusion -- References. | |
590 | |a Knovel |b Knovel (All titles) | ||
650 | 0 | |a Ceramic materials |x Surfaces. | |
650 | 0 | |a Composite materials |x Surfaces. | |
650 | 0 | |a Ceramics. | |
655 | 7 | |a elektronické knihy |7 fd186907 |2 czenas | |
655 | 9 | |a electronic books |2 eczenas | |
700 | 1 | |a Jose, Rajan, |e editor. | |
700 | 1 | |a Ezema, Fabian I., |e editor. |1 https://id.oclc.org/worldcat/entity/E39PCjJx6BbKDvWXQq87qRCkH3 | |
856 | 4 | 0 | |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpSMFCC001/surface-modification-and?kpromoter=marc |y Full text |