Thermodynamics of Heat Engines.

Saved in:
Bibliographic Details
Other Authors Desmet, Bernard
Format Electronic eBook
LanguageEnglish
Published London, UK : Hoboken, NJ : ISTE Ltd ; John Wiley & Sons, Inc., 2022.
Subjects
Online AccessFull text
ISBN9781394188192
1394188196
9781394188178
139418817X
9781789450750
Physical Description1 online resource (258 pages)

Cover

Table of Contents:
  • Cover
  • Title Page
  • Copyright Page
  • Contents
  • Foreword
  • Preface
  • Chapter 1. Energy Conversion: Thermodynamic Basics
  • 1.1. Introduction
  • 1.2. Principles of thermodynamics
  • 1.2.1. Notion of a thermodynamic system
  • 1.2.2. First law
  • 1.2.3. Second law: mechanism of mechanical energy degradation in a heat engine
  • 1.3. Thermodynamics of gases
  • 1.3.1. Equations of state
  • 1.3.2. Calorimetric coefficients
  • 1.3.3. Ideal gas
  • 1.3.4. Van der Waals gas
  • 1.4. Conclusion
  • 1.5. References
  • Chapter 2. Internal Combustion Engines
  • 2.1. Generalities
  • Operating principles
  • 2.1.1. Introduction
  • 2.1.2. Spark-ignition engines
  • 2.1.3. Compression ignition engine
  • 2.1.4. Expression of useful work
  • 2.2. Theoretical air cycles
  • 2.2.1. Hypotheses
  • 2.2.2. Beau de Rochas cycle (Otto cycle)
  • 2.2.3. Miller-Atkinson cycle
  • 2.2.4. Diesel cycle
  • 2.2.5. The limited pressure cycle (mixed cycle)
  • 2.2.6. Comparison of theoretical air cycles
  • 2.3. Influences of the thermophysical properties of the working fluid on the theoretical cycles
  • 2.3.1. Thermophysical properties of the working fluid
  • 2.3.2. Reversible adiabatic transformations
  • 2.3.3. Mixed cycle for ideal and semi-ideal gases
  • 2.4. Zero-dimensional thermodynamic models
  • 2.4.1. Hypotheses
  • 2.4.2. Single-zone model
  • 2.4.3. Flow through the valves
  • 2.4.4. Heat transfer with the cylinder walls
  • 2.4.5. Combustion heat generation model
  • 2.4.6. Two-zone model
  • 2.5. Supercharging of internal combustion engines
  • 2.5.1. Basic principles of supercharging
  • 2.5.2. Supercharging by a driven compressor
  • 2.5.3. Turbocharging
  • 2.6. Conclusions and perspectives
  • 2.7. References
  • Chapter 3. Aeronautical and Space Propulsion
  • 3.1. History and development of aeronautical means of propulsion.
  • 3.2. Presentation of the aircraft system and its propulsive unit
  • 3.2.1. Classification and presentation of the usual architectures of aeronautical engines and their specific uses
  • 3.2.2. Study of the forces applied on the aircraft system during steady flight
  • 3.2.3. Definition of the propulsion forces and specific quantities of the propulsion system
  • 3.3. Operating cycle analysis
  • 3.3.1. Hypotheses and limits of validity
  • 3.3.2. Presentation of engine stations (SAE ARP 755 STANDARD)
  • 3.3.3. Study of thermodynamic transformations and their representations in T- s diagrams
  • 3.3.4. Study of the thermodynamic cycles for a gas turbine
  • 3.3.5. Study of the thermodynamic cycle of a gas turbine, branch by branch
  • 3.3.6. Improvements to the Joule-Brayton cycle
  • 3.3.7. Thermodynamic improvements for a gas turbine using energy regeneration
  • 3.3.8. Thermodynamic improvements for a gas turbine using staged compression and expansion
  • 3.4. The actual engine
  • 3.4.1. Development cycle of the turbomachine (turbojet)
  • 3.4.2. Technical disciplines in development
  • 3.4.3. Some specific problems of each module
  • 3.4.4. Secondary air system design methods
  • 3.4.5. T4 and the secondary air system
  • 3.5. Perspectives
  • 3.6. References
  • Chapter 4. Combustion and Conversion of Energy
  • 4.1. Generalities
  • 4.1.1. Introduction
  • 4.1.2. Premixed flame
  • 4.1.3. Diffusion flame
  • 4.1.4. Stabilization of a flame
  • 4.1.5. Flammability of air-fuel mixtures
  • 4.1.6. Combustion in internal combustion engines
  • 4.2. Theoretical combustion reactions
  • 4.2.1. Constituents of the combustible mixture
  • 4.2.2. Combustion stoichiometry
  • 4.2.3. Theoretical combustion of a lean mixture
  • 4.2.4. Theoretical combustion of a rich mixture
  • 4.3. Energy study of combustion
  • 4.3.1. Combustion at constant volume.
  • 4.3.2. Combustion at constant pressure
  • 4.3.3. Relations between heating values
  • 4.3.4. Adiabatic flame and explosion temperatures
  • 4.4. Chemical kinetics of combustion
  • 4.4.1. Chain reactions
  • 4.4.2. Composition of a reactive mixture
  • 4.4.3. Reaction rates
  • 4.4.4. Establishing a chemical equilibrium
  • 4.4.5. Equilibrium composition of the combustion products
  • 4.4.6. Detailed chemical kinetics-formation of pollutants
  • 4.5. Exergy analysis of combustion
  • 4.5.1. Exergy of a gas mixture
  • 4.5.2. Exergy production from a combustion reaction
  • 4.5.3. Exergy of a fuel
  • 4.6. Conclusion
  • 4.7. References
  • Chapter 5. Engines with an External Heat Supply
  • 5.1. Introduction
  • 5.2. The Stirling engine
  • 5.2.1. Theoretical cycle
  • 5.2.2. Characteristics of the Stirling engine
  • 5.3. The Ericsson engine
  • 5.3.1. Operating principles
  • 5.3.2. Theoretical cycles
  • 5.3.3. Improvements of the Ericsson engine
  • 5.4. Perspectives
  • 5.4.1. Advantages and disadvantages of Stirling and Ericsson engines
  • 5.4.2. Perspectives of evolution of external combustion machines in the new decarbonized energy landscape
  • 5.5. References
  • Chapter 6. Energy Recovery
  • Waste Heat Recovery
  • 6.1.Waste energy recovery
  • 6.1.1. Energy balance of an internal combustion engine
  • 6.1.2. Degradation of mechanizable energy into uncompensated heat
  • 6.1.3. Exergy balance in internal combustion engines
  • 6.1.4. Concept of energy recovery
  • 6.2. Cogeneration in industrial facilities
  • 6.2.1. Cogenerating gas turbines
  • 6.2.2. Cogenerating diesel engine
  • 6.2.3. Comparative cogeneration efficiencies
  • 6.2.4. Complex depressurized cycle
  • 6.2.5. Complex over-expansion cycle
  • 6.2.6. Conclusion
  • 6.3. Micro-cogeneration
  • 6.3.1. Introduction
  • 6.3.2. Classification
  • 6.3.3. Internal combustion engines
  • 6.3.4. Gas micro-turbines.
  • 6.3.5. Fuel cells
  • 6.3.6. Thermoelectricity
  • 6.3.7. Thermoacoustics
  • 6.3.8. "Rankinized" cycles
  • 6.4. Conclusion
  • 6.5. Perspectives
  • 6.6. References
  • List of Authors
  • Index
  • EULA.