Thermodynamics of Heat Engines.
Saved in:
| Other Authors | |
|---|---|
| Format | Electronic eBook |
| Language | English |
| Published |
London, UK : Hoboken, NJ :
ISTE Ltd ; John Wiley & Sons, Inc.,
2022.
|
| Subjects | |
| Online Access | Full text |
| ISBN | 9781394188192 1394188196 9781394188178 139418817X 9781789450750 |
| Physical Description | 1 online resource (258 pages) |
Cover
| LEADER | 00000cam a2200000Mi 4500 | ||
|---|---|---|---|
| 001 | kn-on1363108670 | ||
| 003 | OCoLC | ||
| 005 | 20240717213016.0 | ||
| 006 | m o d | ||
| 007 | cr cn||||||||| | ||
| 008 | 221122t20222022enk o 000 0 eng d | ||
| 040 | |a SFB |b eng |e rda |e pn |c SFB |d YDX |d OCLCF |d DG1 |d OCLCO | ||
| 020 | |a 9781394188192 |q electronic book | ||
| 020 | |a 1394188196 |q electronic book | ||
| 020 | |a 9781394188178 |q electronic book | ||
| 020 | |a 139418817X |q electronic book | ||
| 020 | |z 9781789450750 |q hardcover | ||
| 035 | |a (OCoLC)1363108670 | ||
| 245 | 0 | 0 | |a Thermodynamics of Heat Engines. |
| 264 | 1 | |a London, UK : |b ISTE Ltd ; |a Hoboken, NJ : |b John Wiley & Sons, Inc., |c 2022. | |
| 264 | 4 | |c ©2022 | |
| 300 | |a 1 online resource (258 pages) | ||
| 336 | |a text |b txt |2 rdacontent | ||
| 337 | |a computer |b c |2 rdamedia | ||
| 338 | |a online resource |b cr |2 rdacarrier | ||
| 505 | 0 | |a Cover -- Title Page -- Copyright Page -- Contents -- Foreword -- Preface -- Chapter 1. Energy Conversion: Thermodynamic Basics -- 1.1. Introduction -- 1.2. Principles of thermodynamics -- 1.2.1. Notion of a thermodynamic system -- 1.2.2. First law -- 1.2.3. Second law: mechanism of mechanical energy degradation in a heat engine -- 1.3. Thermodynamics of gases -- 1.3.1. Equations of state -- 1.3.2. Calorimetric coefficients -- 1.3.3. Ideal gas -- 1.3.4. Van der Waals gas -- 1.4. Conclusion -- 1.5. References -- Chapter 2. Internal Combustion Engines -- 2.1. Generalities -- Operating principles -- 2.1.1. Introduction -- 2.1.2. Spark-ignition engines -- 2.1.3. Compression ignition engine -- 2.1.4. Expression of useful work -- 2.2. Theoretical air cycles -- 2.2.1. Hypotheses -- 2.2.2. Beau de Rochas cycle (Otto cycle) -- 2.2.3. Miller-Atkinson cycle -- 2.2.4. Diesel cycle -- 2.2.5. The limited pressure cycle (mixed cycle) -- 2.2.6. Comparison of theoretical air cycles -- 2.3. Influences of the thermophysical properties of the working fluid on the theoretical cycles -- 2.3.1. Thermophysical properties of the working fluid -- 2.3.2. Reversible adiabatic transformations -- 2.3.3. Mixed cycle for ideal and semi-ideal gases -- 2.4. Zero-dimensional thermodynamic models -- 2.4.1. Hypotheses -- 2.4.2. Single-zone model -- 2.4.3. Flow through the valves -- 2.4.4. Heat transfer with the cylinder walls -- 2.4.5. Combustion heat generation model -- 2.4.6. Two-zone model -- 2.5. Supercharging of internal combustion engines -- 2.5.1. Basic principles of supercharging -- 2.5.2. Supercharging by a driven compressor -- 2.5.3. Turbocharging -- 2.6. Conclusions and perspectives -- 2.7. References -- Chapter 3. Aeronautical and Space Propulsion -- 3.1. History and development of aeronautical means of propulsion. | |
| 505 | 8 | |a 3.2. Presentation of the aircraft system and its propulsive unit -- 3.2.1. Classification and presentation of the usual architectures of aeronautical engines and their specific uses -- 3.2.2. Study of the forces applied on the aircraft system during steady flight -- 3.2.3. Definition of the propulsion forces and specific quantities of the propulsion system -- 3.3. Operating cycle analysis -- 3.3.1. Hypotheses and limits of validity -- 3.3.2. Presentation of engine stations (SAE ARP 755 STANDARD) -- 3.3.3. Study of thermodynamic transformations and their representations in T- s diagrams -- 3.3.4. Study of the thermodynamic cycles for a gas turbine -- 3.3.5. Study of the thermodynamic cycle of a gas turbine, branch by branch -- 3.3.6. Improvements to the Joule-Brayton cycle -- 3.3.7. Thermodynamic improvements for a gas turbine using energy regeneration -- 3.3.8. Thermodynamic improvements for a gas turbine using staged compression and expansion -- 3.4. The actual engine -- 3.4.1. Development cycle of the turbomachine (turbojet) -- 3.4.2. Technical disciplines in development -- 3.4.3. Some specific problems of each module -- 3.4.4. Secondary air system design methods -- 3.4.5. T4 and the secondary air system -- 3.5. Perspectives -- 3.6. References -- Chapter 4. Combustion and Conversion of Energy -- 4.1. Generalities -- 4.1.1. Introduction -- 4.1.2. Premixed flame -- 4.1.3. Diffusion flame -- 4.1.4. Stabilization of a flame -- 4.1.5. Flammability of air-fuel mixtures -- 4.1.6. Combustion in internal combustion engines -- 4.2. Theoretical combustion reactions -- 4.2.1. Constituents of the combustible mixture -- 4.2.2. Combustion stoichiometry -- 4.2.3. Theoretical combustion of a lean mixture -- 4.2.4. Theoretical combustion of a rich mixture -- 4.3. Energy study of combustion -- 4.3.1. Combustion at constant volume. | |
| 505 | 8 | |a 4.3.2. Combustion at constant pressure -- 4.3.3. Relations between heating values -- 4.3.4. Adiabatic flame and explosion temperatures -- 4.4. Chemical kinetics of combustion -- 4.4.1. Chain reactions -- 4.4.2. Composition of a reactive mixture -- 4.4.3. Reaction rates -- 4.4.4. Establishing a chemical equilibrium -- 4.4.5. Equilibrium composition of the combustion products -- 4.4.6. Detailed chemical kinetics-formation of pollutants -- 4.5. Exergy analysis of combustion -- 4.5.1. Exergy of a gas mixture -- 4.5.2. Exergy production from a combustion reaction -- 4.5.3. Exergy of a fuel -- 4.6. Conclusion -- 4.7. References -- Chapter 5. Engines with an External Heat Supply -- 5.1. Introduction -- 5.2. The Stirling engine -- 5.2.1. Theoretical cycle -- 5.2.2. Characteristics of the Stirling engine -- 5.3. The Ericsson engine -- 5.3.1. Operating principles -- 5.3.2. Theoretical cycles -- 5.3.3. Improvements of the Ericsson engine -- 5.4. Perspectives -- 5.4.1. Advantages and disadvantages of Stirling and Ericsson engines -- 5.4.2. Perspectives of evolution of external combustion machines in the new decarbonized energy landscape -- 5.5. References -- Chapter 6. Energy Recovery -- Waste Heat Recovery -- 6.1.Waste energy recovery -- 6.1.1. Energy balance of an internal combustion engine -- 6.1.2. Degradation of mechanizable energy into uncompensated heat -- 6.1.3. Exergy balance in internal combustion engines -- 6.1.4. Concept of energy recovery -- 6.2. Cogeneration in industrial facilities -- 6.2.1. Cogenerating gas turbines -- 6.2.2. Cogenerating diesel engine -- 6.2.3. Comparative cogeneration efficiencies -- 6.2.4. Complex depressurized cycle -- 6.2.5. Complex over-expansion cycle -- 6.2.6. Conclusion -- 6.3. Micro-cogeneration -- 6.3.1. Introduction -- 6.3.2. Classification -- 6.3.3. Internal combustion engines -- 6.3.4. Gas micro-turbines. | |
| 505 | 8 | |a 6.3.5. Fuel cells -- 6.3.6. Thermoelectricity -- 6.3.7. Thermoacoustics -- 6.3.8. "Rankinized" cycles -- 6.4. Conclusion -- 6.5. Perspectives -- 6.6. References -- List of Authors -- Index -- EULA. | |
| 506 | |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty | ||
| 590 | |a Knovel |b Knovel (All titles) | ||
| 650 | 0 | |a Heat-engines. | |
| 655 | 7 | |a elektronické knihy |7 fd186907 |2 czenas | |
| 655 | 9 | |a electronic books |2 eczenas | |
| 700 | 1 | |a Desmet, Bernard. | |
| 776 | 0 | 8 | |i Print version: |a Desmet, Bernard |t Thermodynamics of Heat Engines |d Newark : John Wiley & Sons, Incorporated,c2022 |z 9781789450750 |
| 856 | 4 | 0 | |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpTHE00012/thermodynamics-of-heat?kpromoter=marc |y Full text |