Carbon quantum dots for sustainable energy and optoelectronics

Carbon Quantum Dots for Sustainable Energy and Optoelectronics reviews the synthesis, properties, and applications of carbon nanodots. This book provides readers with an overview of the key advances in the development of carbon quantum dots including synthesis and surface engineering strategies such...

Full description

Saved in:
Bibliographic Details
Other Authors: Batabyal, Sudip Kumar.
Format: eBook
Language: English
Published: Cambridge, MA : Woodhead Publishing, an imprint of Elsevier, [2023]
Series: Woodhead Publishing series in electronic and optical materials.
Subjects:
ISBN: 9780323908962
0323908969
9780323908955
0323908950
Physical Description: 1 online resource.

Cover

Table of contents

LEADER 12642cam a22004697i 4500
001 kn-on1360515618
003 OCoLC
005 20240717213016.0
006 m o d
007 cr cn|||||||||
008 230127s2023 mau ob 001 0 eng d
040 |a YDX  |b eng  |e rda  |c YDX  |d OPELS  |d UKAHL  |d YDX  |d UKMGB  |d OCLCF  |d OCLCO  |d SFB  |d SXB  |d OCLCQ 
020 |a 9780323908962  |q electronic book 
020 |a 0323908969  |q electronic book 
020 |z 9780323908955 
020 |z 0323908950 
035 |a (OCoLC)1360515618 
245 0 0 |a Carbon quantum dots for sustainable energy and optoelectronics /  |c edited by Sudip Kumar Batabyal [and more]. 
264 1 |a Cambridge, MA :  |b Woodhead Publishing, an imprint of Elsevier,  |c [2023] 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Woodhead Publishing series in electronic and optical materials 
504 |a Includes bibliographical references and index. 
505 0 |a Front Cover -- Carbon Quantum Dots for Sustainable Energy and Optoelectronics -- Copyright Page -- Contents -- List of contributors -- Preface -- 1 Photophysical properties of carbon quantum dots -- 1.1 Introduction -- 1.2 Optical absorption properties of carbon quantum dots -- 1.3 Factors influencing the photoluminescence properties of carbon quantum dots -- 1.3.1 Quantum confinement effect -- 1.3.2 Doping nonmetallic heteroatoms -- 1.3.3 Local heterogeneity originated from heteroatom-mediated surface defects -- 1.3.4 Influence of edge states -- 1.3.5 Red edge effect -- 1.3.6 Surface defect states -- 1.3.7 Aggregation-induced emission in carbon quantum dots -- 1.3.7.1 Effect of solvent polarity -- 1.3.7.2 Effect of material concentration -- 1.3.7.3 Effect of added metal ions -- 1.3.8 Förster resonance energy transfer -- 1.3.9 Photoinduced electron transfer -- 1.3.10 Electroluminescence of carbon dots -- 1.4 Conclusions and future aspect -- References -- 2 The physical and chemical properties of carbon dots via computational modeling -- 2.1 Introduction -- 2.2 Different carbon dots -- 2.3 Computational methods applied to study the properties of carbon dots -- 2.4 Theoretical studies of different properties of carbon quantum dots -- 2.4.1 Electronic structure -- 2.4.2 Optical properties -- 2.4.3 Electrocatalytic properties -- 2.4.4 Transport properties -- 2.4.5 Kondo effect in carbon quantum dots -- 2.5 Summary and outlook -- References -- 3 Synthesis of carbon quantum dots -- 3.1 Introduction -- 3.1.1 Carbon quantum dots -- 3.1.1.1 Structure of carbon quantum dots -- 3.1.1.2 Principles of synthesis -- 3.2 Basic techniques for carbon quantum dot preparation -- 3.2.1 Top-down approach -- 3.2.1.1 Physical methods -- Arc discharge method -- Laser ablation -- Plasma treatment -- 3.2.1.2 Chemical methods -- Electrochemical synthesis. 
505 8 |a Chemical ablation/oxidation -- 3.2.2 Bottom-up approach -- 3.2.2.1 Microwave-assisted method -- 3.2.2.2 Hydrothermal method -- 3.2.2.3 Ultrasound-assisted method -- 3.3 Conclusion -- References -- Further reading -- 4 Characterization and physical properties of carbon quantum dots -- 4.1 Introduction -- 4.1.1 Carbon quantum dots -- 4.1.2 Structure of carbon quantum dots -- 4.1.2.1 Chemical and electronic structures of carbon quantum dots -- 4.1.3 Types -- 4.1.3.1 Hydrophobic carbon quantum dots -- 4.1.3.2 Hydrophilic carbon quantum dots -- Undoped carbon quantum dots -- Doped carbon quantum dots -- 4.2 Physical properties -- 4.2.1 Physiochemical properties (catalytic) -- 4.2.2 Optical properties -- 4.2.2.1 Absorption -- 4.2.2.2 Photoluminescence -- Fluorescence -- Phosphorescence -- 4.2.2.3 Electroluminescence -- 4.2.2.4 Up-converted photoluminescence -- 4.2.3 Photoinduced electron transfer -- 4.2.4 Biological properties -- 4.3 Characterization -- 4.3.1 Structural characterization -- 4.3.1.1 X-ray powder diffraction -- 4.3.1.2 Scanning electron microscope -- 4.3.1.3 Transmission electron microscope -- 4.3.1.4 Raman spectroscopy -- 4.3.1.5 X-ray photoelectron spectroscopy -- 4.3.1.6 Fourier-transform Infrared -- 4.3.1.7 Atomic force microscopy -- 4.3.1.8 UV-vis spectra -- 4.3.2 Photophysical analysis -- 4.3.2.1 Photoluminescence -- 4.3.2.2 Fluorescence -- 4.3.2.3 Forster resonance energy transfer -- 4.3.3 Stability of carbon quantum dots -- 4.4 Conclusions -- References -- 5 Surface engineering of carbon quantum dots -- 5.1 Introduction -- 5.1.1 Carbon nanotube versus carbon quantum dots -- 5.1.2 Fundamentals of surface engineering in carbogenic allotropes -- 5.2 Methodology -- 5.2.1 Hydrothermal carbonization -- 5.2.1.1 Amino-functionalized fluorescent carbon quantum dots -- 5.2.1.2 Branched polyethylenimine functionalized carbon quantum dots. 
505 8 |a 5.2.1.3 Amino-functionalized carbon quantum dots -- 5.2.1.4 Spiropyran-functionalized carbon quantum dots -- 5.2.2 Microwave-assisted pyrolysis -- 5.2.2.1 Hyperbranched polyethylenimine and isobutyric amide functionalized C-dots -- 5.2.2.2 Organosilane functionalized carbon quantum dots -- 5.2.2.3 Organic dye-functionalized carbon quantum dot -- 5.2.3 Sol-gel reaction -- 5.2.4 Condensation reaction -- 5.2.4.1 Europium-adjusted carbon dots -- 5.2.5 Oxidation-polymerization reaction -- 5.3 Conclusion -- References -- 6 Photodetector applications of carbon and graphene quantum dots -- 6.1 Introduction -- 6.2 Synthesis of carbon quantum dots and graphene quantum dots -- 6.2.1 Top-down synthesis process -- 6.2.2 Bottom-up synthesis process -- 6.3 Optical absorption, emission, and electrical properties -- 6.4 Optoelectronics applications of carbon quantum dots and graphene quantum dots -- 6.5 Photodetector applications of carbon quantum dots and graphene quantum dots -- 6.5.1 FET-based photodetectors using carbon quantum dots and graphene quantum dots -- 6.5.2 Carbon quantum dots or graphene quantum dots-sensitized nanomaterial-based photodetectors -- 6.5.3 Polymer nanocomposite-based photodetectors -- 6.6 Conclusions -- References -- 7 Photovoltaic application of carbon quantum dots -- 7.1 Introduction -- 7.2 Carbon quantum dots in dye-sensitized solar cells -- 7.2.1 Carbon quantum dots as sensitizer -- 7.2.2 Carbon quantum dots as counter electrode -- 7.3 Carbon quantum dots in organic solar cells -- 7.4 Carbon quantum dots in solid-state solar cells -- 7.5 Carbon quantum dots in perovskite solar cells -- 7.6 Carbon quantum dots in all-weather solar cells -- 7.7 Summary and perspective -- Acknowledgments -- References -- 8 Light-emitting diode application of carbon quantum dots -- 8.1 Introduction. 
505 8 |a 8.2 Synthesis methods of functionalized carbon quantum dots -- 8.2.1 Electrochemical synthesis -- 8.2.2 Arc discharge -- 8.2.3 Pulsed laser ablation/passivation technique -- 8.2.4 Microwave-assisted synthesis -- 8.2.5 Hydrothermal and solvothermal synthesis -- 8.3 Optical properties of carbon quantum dots -- 8.3.1 Optical absorption -- 8.3.2 Photoluminescence emissions from ultraviolet to near-infrared regions -- 8.3.2.1 Photoluminescence emission due to quantum confinement effect -- 8.3.2.2 Photoluminescence emission due to surface passivation and functionalization effect -- 8.3.2.3 Up-conversion photoluminescence -- 8.3.3 Electroluminescence -- 8.4 Carbon quantum dots device applications -- 8.4.1 Light-emitting diodes -- 8.4.2 Optical gain and lasing -- 8.5 Summary -- References -- 9 Nanoelectronic applications of carbon quantum dots -- 9.1 General introduction -- 9.2 Memory devices -- 9.2.1 Classifications of memory devices -- 9.2.2 Random access memory -- 9.3 Transistors -- 9.3.1 Basics of transistor -- 9.3.2 Carbon quantum dots used in transistor applications -- 9.4 Sensors -- 9.5 Carbon quantum dot laser -- Reference -- 10 Carbon quantum dot-based nanosensors -- 10.1 Introduction to nanosensors -- 10.2 Chemical sensing -- 10.2.1 Fluorescence-based chemical sensing -- 10.2.1.1 Reasons for strong emission characteristics in nanoparticles -- 10.2.2 Chemical sensors: nanoparticles as superior components -- 10.2.3 CQDs: fluorescent sensor material -- 10.2.3.1 Fluorescence from CQDs -- Radiative recombination in small nano-domains -- Free zigzag sites with a carbine-like triplet ground state -- 10.2.3.2 The basis of fluorescence sensing by CQDs -- Quenching and sensing -- 10.2.4 pH sensor -- 10.2.4.1 Role of surface groups in pH sensor applications of CQDs -- 10.2.4.2 Few more examples of pH sensing with CQDs. 
505 8 |a 10.2.5 Effect of solvent: sensing dielectric of surrounding medium -- 10.2.5.1 Few more examples of solvent sensing -- 10.2.6 Doped CQDs in sensors: metal ion detection -- 10.2.6.1 Red emitting carbon dots for specific metal ion detection -- 10.2.7 Gas sensing with conducting carbon dots -- 10.2.7.1 Designing of gas sensors using carbonaceous nanomaterials -- 10.2.7.2 Effect of CQDs on the electrical properties of conducting polymers -- 10.2.8 A VOC sensor based on CQDs -- 10.2.8.1 Nanotechnology applications using CQDs for Gas/VOC sensing: a case study -- 10.3 Conclusion -- References -- 11 Carbon dots: biomedical applications -- 11.1 Carbon dots: structure and functionalization -- 11.2 Biosynthesis of carbon dots -- 11.3 Bioimaging applications of carbon dots -- 11.3.1 Carbon dots: optical properties -- 11.4 Biomedical applications of carbon dots -- 11.4.1 Drug delivery -- 11.4.2 Crossing blood-brain barrier -- 11.4.3 Gene delivery -- 11.5 Biosensing applications using carbon dots -- 11.6 Future scope and challenges -- References -- 12 Bioimaging applications of carbon quantum dots -- 12.1 Introduction -- 12.2 Development of various bioimaging modalities -- 12.3 Requirement of imaging agents -- 12.4 Nanomaterials as imaging agents -- 12.5 Carbon quantum dots -- 12.6 Synthesis and modifications in carbon quantum dots -- 12.6.1 Chemical ablation -- 12.6.2 Electrochemical method -- 12.6.3 Laser ablation -- 12.6.4 Arc Discharge method -- 12.6.5 Hydrothermal method -- 12.6.6 Microwave irradiation -- 12.6.7 Pyrolysis method -- 12.7 Surface activation -- 12.7.1 Surface passivation -- 12.7.2 Surface functionalization -- 12.7.3 Doping -- 12.8 Properties of carbon quantum dots -- 12.8.1 Fluorescence -- 12.8.2 Quantum yield -- 12.9 cDot in bioimaging -- 12.9.1 In vitro imaging -- 12.9.2 In vivo imaging -- 12.9.3 Single-molecule imaging -- 12.10 Conclusion. 
506 |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty 
520 |a Carbon Quantum Dots for Sustainable Energy and Optoelectronics reviews the synthesis, properties, and applications of carbon nanodots. This book provides readers with an overview of the key advances in the development of carbon quantum dots including synthesis and surface engineering strategies such as pyrolysis-based synthesis, biomass-based synthesis, functionalization, and other methods toward large-scale development of these carbon nanomaterials. The emerging applications of carbon quantum dots in different fields, such as energy harvesting, energy storage, and biomedical applications, are thoroughly reviewed, emphasizing the impact of enhanced properties of carbon quantum dots for these applications. Carbon Quantum Dots for Sustainable Energy and Optoelectronics is suitable for graduate students, materials scientists, and engineers working in academia and industry. This book is also beneficial for the interdisciplinary community of researchers and practitioners working in the field of nanotechnology. Introduces recent advances in the understanding of carbon quantum dots, including relevant synthesis and surface engineering strategies for their large-scale development Provides an overview of the most relevant applications of carbon quantum dots for the development of sustainable technologies in optoelectronics and energy storage and production Discusses future research directions and remaining challenges towards the commercial translation of carbon quantum dots. 
590 |a Knovel  |b Knovel (All titles) 
650 0 |a Quantum dots  |x Industrial applications. 
650 0 |a Optoelectronics. 
655 7 |a elektronické knihy  |7 fd186907  |2 czenas 
655 9 |a electronic books  |2 eczenas 
700 1 |a Batabyal, Sudip Kumar. 
776 0 8 |i ebook version :  |z 9780323908962 
776 0 8 |c Original  |z 0323908950  |z 9780323908955  |w (OCoLC)1321786120 
830 0 |a Woodhead Publishing series in electronic and optical materials. 
856 4 0 |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpCQDSEO03/carbon-quantum-dots?kpromoter=marc  |y Full text