Essentials of flow assurance solids in oil and gas operations : understanding fundamentals, characterization, prediction, environmental safety, and management
Saved in:
| Main Author | |
|---|---|
| Format | Electronic eBook |
| Language | English |
| Published |
Cambridge, MA :
Gulf Professional Publishing,
2023.
|
| Subjects | |
| Online Access | Full text |
| ISBN | 9780323991186 0323991181 |
| Physical Description | 1 online resource : illustrations (black and white, and color). |
Cover
Table of Contents:
- Intro
- Essentials of Flow Assurance Solids in Oil and Gas Operations: Understanding Fundamentals, Characterization, Prediction, En...
- Copyright
- Dedication
- Contents
- Chapter 1: Oil and Gas Production Operations and Production Fluids
- 1.1. Introduction
- 1.2. What is petroleum?
- 1.3. How was petroleum formed?
- 1.3.1. The biogenic theory of formation of petroleum
- 1.3.2. Abiogenic theory of formation of petroleum
- 1.4. Life cycle of oil and gas fields and stages of development
- 1.4.1. Exploration
- 1.4.2. Drilling
- 1.4.3. Completion
- 1.4.4. Production
- 1.4.4.1. Primary recovery
- 1.4.4.2. Secondary recovery
- 1.4.4.3. Enhanced oil recovery
- 1.4.4.4. Crude oil and gas processing
- 1.4.4.5. Produced water treatment
- 1.4.5. Workover/recompletion
- 1.4.6. Eventual abandonment
- 1.5. The production system
- 1.6. Production system parameters
- 1.6.1. Pressure
- 1.6.2. Temperature
- 1.6.3. pH
- 1.6.4. Flow rate
- 1.6.5. System design
- 1.7. Production fluids
- 1.7.1. Hydrocarbons
- 1.7.1.1. Natural gas
- 1.7.1.1.1. Natural gas composition and properties
- 1.7.1.1.2. Classification of natural gas
- 1.7.1.2. Condensate
- 1.7.1.2.1. Condensate composition and properties
- 1.7.1.3. Crude oil
- 1.7.1.3.1. Crude oil composition
- 1.7.1.3.2. Physical properties of crude oil
- 1.7.1.3.3. Classification of crude oils
- 1.7.1.4. Hydrocarbon analysis methods and techniques
- 1.7.2. Water
- 1.7.2.1. Origins of produced water
- 1.7.2.2. Chemical composition of produced water
- 1.7.2.3. Physical properties of produced water
- 1.7.2.4. Water analysis methods and techniques
- 1.7.3. Phase behavior of petroleum fluids
- 1.7.3.1. Phase behavior of hydrocarbon systems
- 1.7.3.2. Phase behavior of water-hydrocarbon system
- 1.8. Summary
- References
- Chapter 2: Flow Assurance
- 2.1. Introduction.
- 2.2. The concept of fluid flow
- 2.3. Pressure drop
- 2.4. Factors affecting pressure drop
- 2.4.1. Wellbore pressure drop
- 2.4.2. System design and installations
- 2.4.3. Friction
- 2.4.4. Surface roughness
- 2.4.5. Fluid properties
- 2.4.6. Temperature
- 2.4.7. Gravity forces
- 2.4.8. Fluid flow regimes
- 2.4.9. Solid particle transport and deposition
- 2.5. The flow assurance concept
- 2.6. Fluid dynamics
- 2.6.1. Multiphase flow regimes
- 2.6.1.1. Gas-liquid and liquid-liquid flow regimes
- 2.6.1.2. Solid-fluid flow regimes
- 2.6.2. Computational fluid dynamics
- 2.7. Production chemistry
- 2.7.1. Solid deposits
- 2.7.2. Emulsions
- 2.7.2.1. Emulsification mechanism
- 2.7.2.2. Types of emulsions
- 2.7.2.3. Emulsion control methods
- 2.7.3. Sludge
- 2.7.4. Petroleum foams
- 2.7.5. Corrosion
- 2.7.5.1. Corrosion mechanisms
- 2.7.5.2. Forms of corrosion
- 2.7.5.3. Corrosion control
- 2.7.6. Oilfield microbiology
- 2.7.7. Reservoir souring
- 2.7.8. Production chemicals
- 2.7.9. Complexity of production chemistry problems
- 2.8. Flow assurance strategy
- 2.8.1. Sampling
- 2.8.2. Analysis
- 2.8.3. Modeling
- 2.8.4. Management strategy
- 2.8.5. Monitoring and improvement
- 2.9. Flow assurance case studies
- 2.10. Summary
- References
- Chapter 3: Problems Associated With Flow Assurance Solids in Production
- 3.1. Introduction
- 3.2. Where do deposits form in a production system?
- 3.3. The cost of solids formation and deposition
- 3.4. Flow restrictions
- 3.4.1. Formation damage
- 3.4.2. Production tubular flow restrictions and blockages
- 3.4.2.1. Pressure drop due to solids transportation and interactions
- 3.4.2.2. Pressure drop due to changes in surface roughness
- 3.4.2.3. Pressure drop due to changes in conduit dimensions
- 3.5. Equipment impairment and failure.
- 3.5.1. Heat transfer equipment impairment and failure
- 3.5.2. Pumps impairment and failure
- 3.5.3. Separation equipment impairment and failure
- 3.5.4. Flowmeter impairment and failure
- 3.5.5. Valve impairment and failure
- 3.5.6. Sand control equipment impairment and failure
- 3.6. Production chemistry problems induced by solids deposition
- 3.6.1. Emulsion stabilization by solids
- 3.6.2. Corrosion problems
- 3.6.3. Microbial activity
- 3.7. Safety and environmental problems
- 3.8. Summary
- References
- Chapter 4: Principles of Flow Assurance Solids Formation Mechanisms
- 4.1. Introduction
- 4.2. What is a solid deposit?
- 4.3. Types of solid deposits in oil and gas fields
- 4.4. Precipitation vs deposition
- 4.5. Mechanism of formation of solid deposits
- 4.5.1. Step (1) supersaturation
- 4.5.1.1. Supersaturation in aqueous solutions
- 4.5.1.2. Supersaturation in molecular solutions
- 4.5.1.3. Factors affecting supersaturation
- 4.5.2. Step (2) nucleation
- 4.5.2.1. Types of nucleation
- 4.5.2.2. Nucleation theories
- 4.5.2.3. Homogeneous nucleation
- 4.5.2.4. Heterogeneous nucleation
- 4.5.2.5. Rate of nucleation
- 4.5.2.6. Induction time
- 4.5.2.7. Secondary nucleation
- 4.5.2.8. Gas hydrate nucleation
- 4.5.2.9. Wax nucleation
- 4.5.2.10. Asphaltenes nucleation
- 4.5.2.11. Naphthenate nucleation
- 4.5.2.12. Factors affecting the nucleation
- 4.5.3. Step (3) crystal growth
- 4.5.3.1. Crystal growth theories
- 4.5.3.2. Crystal growth rate
- 4.5.3.3. Factors affecting crystal growth
- 4.5.4. Step (4) adhesion
- 4.5.4.1. Particles motion and transport
- 4.5.4.2. Attachment
- 4.5.5. Step (5) aging
- 4.5.5.1. Aging of mineral scales
- 4.5.5.2. Aging of organic deposits
- 4.5.5.3. Factors affecting aging
- 4.6. Fouling
- 4.7. Recent advances in solid deposit formation mechanism research.
- 4.8. Summary
- References
- Chapter 5: Mineral Scales in Oil and Gas Fields
- 5.1. Introduction
- 5.2. Calcium carbonate scale
- 5.2.1. Mechanism of calcium carbonate formation and its polymorphs
- 5.2.2. Factors affecting the formation of calcium carbonate scale
- 5.2.2.1. Effect of pH
- 5.2.2.2. Effect of pressure
- 5.2.2.3. Effect of temperature
- 5.2.2.4. Effect of dissolved salts
- 5.2.2.5. Effect of metal ions
- 5.2.2.6. Effect of alkalinity
- 5.2.2.7. Effect of bacteria
- 5.2.2.8. Effect of fluid dynamics
- 5.2.2.9. Geochemical interactions
- 5.3. Calcium sulfate scale
- 5.3.1. Mechanism of calcium sulfate scale formation and its polymorphs
- 5.3.2. Factors affecting precipitation of calcium sulfates
- 5.3.2.1. Effect of Temperature
- 5.3.2.2. Effect of pressure
- 5.3.2.3. Effect of dissolved salts
- 5.3.2.4. Effect of pH
- 5.4. Barium sulfate scale
- 5.4.1. Mechanism of barium sulfate scale formation
- 5.4.2. Factors affecting the formation of barium sulfate scale
- 5.4.2.1. Effect of temperature
- 5.4.2.2. Effect of pressure
- 5.4.2.3. Effect of dissolved solids
- 5.4.2.4. Effect of sulfide scale deposits
- 5.4.2.5. Effect of fluid hydrodynamics
- 5.5. Strontium sulfate
- 5.5.1. Mechanism of strontium sulfate scale formation
- 5.5.2. Factors affecting the formation of strontium sulfate scale
- 5.5.2.1. Effect of temperature
- 5.5.2.2. Effect of dissolved salts
- 5.5.2.3. Effect of pressure
- 5.5.2.4. Effect of turbulence
- 5.6. Naturally occurring radioactive materials (NORM)
- 5.6.1. Radioactive decay and naturally occurring radionuclide (NOR) formation
- 5.6.1.1. Thorium and uranium NORs
- 5.6.1.2. Radium NORs
- 5.6.1.3. Radon NORs
- 5.6.1.4. Lead NORs
- 5.6.2. Factors affecting the formation of NORM scale
- 5.7. Iron compound scales
- 5.7.1. Sources of iron ion in production fluids.
- 5.7.2. Iron carbonate scale
- 5.7.2.1. Mechanisms of iron carbonate scale formation
- 5.7.2.2. Factors affecting the formation of iron carbonate scale
- 5.7.2.2.1. Effect of temperature
- 5.7.2.2.2. Effect of pressure
- 5.7.2.2.3. Effect of pH
- 5.7.2.2.4. Effect of water cut
- 5.7.2.2.5. Effect of dissolved ions
- 5.7.2.2.6. Effect of organic acids
- 5.7.3. Iron sulfide scale
- 5.7.3.1. Mechanisms of iron sulfide scale formation
- 5.7.3.2. Iron sulfide compounds and polymorphs
- 5.7.3.3. Factors affecting the formation of iron sulfide scale
- 5.7.3.3.1. Effect of temperature
- 5.7.3.3.2. Effect of pressure
- 5.7.3.3.3. Effect of pH
- 5.7.3.3.4. Effect of flow rate
- 5.7.4. Mixed iron sulfides-iron carbonate scales
- 5.7.5. Iron oxides, iron hydroxides, and iron oxy-hydroxides
- 5.7.5.1. Formation of iron oxygen compounds under aerobic conditions in the absence of H2S/CO2
- 5.7.5.2. Formation of iron-oxygen compounds under aerobic conditions in the presence of H2S/CO2
- 5.7.5.3. Formation of iron-oxygen compounds under anaerobic conditions, in the absence of H2S/CO2
- 5.7.5.4. Formation of iron-oxygen compounds under anaerobic conditions in the presence of H2S/CO2
- 5.7.5.5. Formation of iron oxides/hydroxides by bacteria
- 5.7.5.6. Factors affecting the formation of iron oxides/hydroxides
- 5.7.6. Mill scale
- 5.8. Zinc and lead sulfide scales
- 5.8.1. Mechanism of zinc and lead sulfide scales formation
- 5.8.2. Factors affecting the formation zinc and lead sulfide scales
- 5.8.2.1. Effect of temperature
- 5.8.2.2. Effect of pH
- 5.8.2.3. Effect of Dissolved solids
- 5.8.2.4. Effect of pressure
- 5.8.2.5. Mixing incompatible fluids
- 5.9. Halite scale
- 5.9.1. Mechanism of halite scale formation
- 5.9.2. Factors affecting halite deposition
- 5.9.2.1. Effect of temperature
- 5.9.2.2. Effect of pressure.