Sensor Technologies for Civil Infrastructures : Volume 1: Sensing Hardware and Data Collection Methods for Performance Assessment.

Saved in:
Bibliographic Details
Main Author Lynch, Jerome P.
Other Authors Sohn, Hoon, Wang, Ming L.
Format Electronic eBook
LanguageEnglish
Published San Diego : Elsevier Science & Technology, 2022.
Edition2nd ed.
SeriesWoodhead Publishing Series in Civil and Structural Engineering Ser.
Subjects
Online AccessFull text
ISBN9780081026977
0081026978
9780081026960
Physical Description1 online resource (678 pages).

Cover

LEADER 00000cam a2200000Mi 4500
001 kn-on1341454456
003 OCoLC
005 20240717213016.0
006 m o d
007 cr cn|||||||||
008 220722s2022 cau o ||| 0 eng d
040 |a SFB  |b eng  |e rda  |e pn  |c SFB  |d ESU  |d OCLCF  |d OCLCO  |d OCLCL  |d SXB  |d OCLCQ 
020 |a 9780081026977  |q (electronic bk.) 
020 |a 0081026978 
020 |z 9780081026960 
035 |a (OCoLC)1341454456 
100 1 |a Lynch, Jerome P. 
245 1 0 |a Sensor Technologies for Civil Infrastructures :  |b Volume 1: Sensing Hardware and Data Collection Methods for Performance Assessment. 
250 |a 2nd ed. 
264 1 |a San Diego :  |b Elsevier Science & Technology,  |c 2022. 
264 4 |c ©2022. 
300 |a 1 online resource (678 pages). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Woodhead Publishing Series in Civil and Structural Engineering Ser. 
505 0 |a Front Cover -- Sensor Technologies for Civil Infrastructures -- Sensor Technologies for Civil Infrastructures: Volume 1: Sensing Hardware and Data Collection Methods for Performance Assessment -- Copyright -- Contents -- List of contributors -- 1 -- Introduction and sensor technologies -- 1 -- Introduction to sensors and sensing systems for civil infrastructure monitoring and asset management -- 1.1 Introduction to infrastructure sensing -- 1.2 Description of the book organization -- 1.3 Summary -- 1.3.1 Journals -- 1.3.2 Books -- 1.3.3 Conferences -- References -- 2 -- Sensor data acquisition systems and architectures -- 2.1 Scope of this chapter -- 2.1.1 General measurement system -- 2.1.2 Sensor module -- 2.2 Concepts in signals and digital sampling -- 2.2.1 Sampling criteria -- 2.2.2 Digitization and encoding -- 2.3 Analog-to-digital conversion -- 2.3.1 Quantization and quantization error -- 2.3.2 Analog-to-digital converter architectures -- 2.4 Digital-to-analog conversion -- 2.5 Data acquisition systems -- 2.5.1 Analog signal considerations -- 2.5.2 Wired digital communications -- 2.6 Optical sensing DAQ system -- 2.6.1 Photodiodes -- 2.6.2 Photodetectors -- 2.6.3 Tunable optical filters -- 2.7 Wireless data acquisition -- 2.8 Summary and future trends -- References -- 3 -- Commonly used sensors for civil infrastructures and their associated algorithms -- 3.1 Introduction -- 3.2 Brief review of commonly used sensing technologies -- 3.2.1 Displacement -- 3.2.1.1 Linear variable differential transformers -- 3.2.1.2 Potentiometers -- 3.2.2 Strain -- 3.2.2.1 Piezoresistive -- 3.2.2.2 Vibrating-wire -- 3.2.3 Acceleration -- 3.2.3.1 Force-balance -- 3.2.3.2 Capacitive -- 3.2.3.3 Piezoelectric -- 3.2.4 Environment -- 3.2.4.1 Anemometers -- 3.2.4.2 Thermocouples and resistive thermometers -- 3.2.5 Prevalence of commonly used sensors in SHM systems. 
505 8 |a 3.3 Associated algorithms -- 3.3.1 Displacement sensors -- 3.3.2 Strain gages -- 3.3.3 Accelerometers -- 3.3.3.1 Changes in modal parameters -- 3.3.3.2 Changes in input-output models -- 3.3.3.3 Changes in time response-based models -- 3.3.4 Environmental measurements -- 3.4 Examples of continuous monitoring systems -- 3.5 Conclusions and future trends -- References -- Further reading -- 4 -- Piezoelectric transducers -- 4.1 Introduction -- 4.2 Principle of piezoelectricity -- 4.2.1 Definition and categorization of piezoelectricity -- 4.2.2 Operational principle of piezoelectric materials -- 4.2.3 Constitutive equations of piezoelectric materials -- 4.3 Piezoelectric materials and the fabrication of piezoelectric transducers -- 4.3.1 Piezoelectric materials -- 4.3.2 Fabrication of piezoelectric ceramics -- 4.4 Piezoelectric transducers for SHM applications -- 4.5 Bonding effects -- 4.6 Limitations of piezoelectric transducers -- 4.7 SHM techniques using piezoelectric transducers -- 4.7.1 Guided wave techniques -- 4.7.2 Impedance techniques -- 4.7.3 Acoustic emission techniques -- 4.7.4 Piezoelectric transducer self-diagnosis techniques -- 4.8 Applications of piezoelectric transducer-based SHM -- 4.8.1 Bridge structures -- 4.8.2 Aerospace structures -- 4.8.3 Pipeline structures -- 4.8.4 Nuclear power plants -- 4.8.5 Wind turbines -- 4.8.6 Other fields -- 4.9 Future trends -- 4.9.1 High temperature piezoelectric transducers -- 4.9.2 High strain piezoelectric transducers -- 4.9.3 Integration with optic-based SHM techniques -- 4.9.4 Nano-piezoelectric transducers -- 4.9.5 Multifunctional piezoelectric sensing -- 4.9.6 Long-term reliability issue -- 4.10 Chapter summary -- References -- 5 -- Optical fiber sensors -- 5.1 Introduction -- 5.2 Properties of optical fibers -- 5.2.1 Optical fiber concepts -- 5.2.2 Sensing mechanisms -- 5.2.3 Sensor packaging. 
505 8 |a 5.2.4 Cables, connectors, and splicing -- 5.3 Common optical fiber sensors -- 5.3.1 Coherent interferometers -- 5.3.2 Low coherence interferometers -- 5.3.3 Fabry- Pérot interferometers -- 5.3.4 Fiber Bragg gratings -- 5.3.5 Brillouin and Raman scattering distributed sensors -- 5.4 Future trends -- 5.4.1 Multicore fiber sensors -- 5.4.2 Microstructured optical fiber sensors -- 5.4.3 Polymer optical fiber sensors -- 5.4.4 Rayleigh scattering distributed sensors -- 5.5 Sources for further advice -- 5.6 Conclusions -- References -- 6 -- Acoustic emission sensors for assessing and monitoring civil infrastructures -- 6.1 Introduction -- 6.2 Fundamentals of acoustic emission technique -- 6.3 Interpretation of AE signals -- 6.4 AE localization methods -- 6.5 Severity assessment -- 6.6 AE equipment technology -- 6.7 Field applications and structural health monitoring using AE -- 6.8 Future challenges -- 6.9 Conclusion -- References -- 7 -- Radar technology: radio frequency, interferometric, millimeter wave and terahertz sensors for assessing and monitoring ... -- 7.1 Introduction -- 7.2 Radar and millimeter wave sensors -- 7.2.1 GPR principles of operation -- 7.2.2 Fundamentals of systems design -- 7.2.2.1 Range resolution and penetrating depth -- 7.2.3 GPR system design -- 7.2.4 GPR signal processing -- 7.2.4.1 Trace editing and rubber-banding -- 7.2.4.2 Time-zero correction -- 7.2.4.3 Range filtering and cross-range filtering -- 7.2.4.4 Deconvolution -- 7.2.4.5 Migration -- 7.2.4.6 Attribute analysis -- 7.2.4.7 Gain adjustment -- 7.2.4.8 Image analysis -- 7.2.4.9 Region of interest detection -- 7.2.5 Multistatic GPR imaging -- 7.2.6 GPR laboratory and field studies -- 7.3 Terahertz sensors -- 7.3.1 The principles of TDS sensing -- 7.3.2 THz pulse generation -- 7.3.3 THz imaging systems -- 7.4 Conclusions and future trends -- References -- Further reading. 
505 8 |a 8 -- Electromagnetic sensors for assessing and monitoring civil infrastructures -- 8.1 Introduction to magnetics and magnetic materials -- 8.2 Introduction to magnetoelasticity -- 8.3 Magnetic sensory technologies -- 8.3.1 Microstructural characterizing using magnetic method -- 8.3.2 Geometric/structural discontinuity (for example, cracks) inspection using magnetic method -- 8.3.3 Anomaly inspection through dynamic magnetic signal (eddy current and Barkhansen noise, and so on) -- 8.3.4 Corrosion monitoring using magnetic method -- 8.3.5 Mapping and characterizing residual stress in steel structures using magnetic method -- 8.3.6 Magnetostrictive sensors -- 8.3.7 Application of magnetoelasticity in tensile stress monitoring -- 8.4 Role of microstructure in magnetization and magnetoelasticity -- 8.5 Magnetoelastic stress sensors for tension monitoring of steel cables -- 8.6 Temperature effects -- 8.7 Eddy current -- 8.8 Removable (portable) elastomagnetic stress sensor -- 8.9 Conclusion and future trends -- References -- 9 -- Microelectromechanical systems for assessing and monitoring civil infrastructures -- 9.1 Introduction -- 9.2 Sensor materials and micromachining techniques -- 9.2.1 Sensor materials -- 9.2.2 Micromachining methods -- 9.3 Sensor characteristics -- 9.3.1 Transduction principles -- 9.3.2 Stiction and collapse voltage -- 9.3.3 Squeeze film damping -- 9.3.4 Thin film residual stress -- 9.3.5 Packaging -- 9.4 MEMS sensors for SHM -- 9.4.1 Accelerometer -- 9.4.2 Acoustic emission sensor -- 9.4.3 Strain sensor -- 9.4.4 Corrosion sensor -- 9.4.5 Ultrasonic sensor -- 9.4.6 MEMS in IoT for SHM -- 9.4.7 Multisensor MEMS devices and networks -- 9.5 Application examples -- 9.6 Durability of MEMS sensors for SHM -- 9.7 Current research directions of MEMS sensors for SHM -- 9.8 Further resources -- 9.8.1 MEMS-related books. 
505 8 |a 9.8.2 Commercial manufacturers and foundries -- 9.8.3 Journal resources -- References -- Further reading -- 10 -- Laser-based sensing for assessing and monitoring civil infrastructures -- 10.1 Laser-based sensing -- 10.1.1 Introduction -- 10.1.2 Principles of lasers -- 10.1.2.1 Stimulated emission and thermal radiation -- 10.1.2.2 Optical amplification of lights in a medium -- 10.1.3 Laser interferometry or electronic speckle pattern interferometry -- 10.1.4 Laser holographic interferometry -- 10.1.5 Laser digital shearography -- 10.1.6 Laser scanning photogrammetry/LiDAR -- 10.1.7 Laser Doppler vibrometry -- 10.1.8 Laser-ultrasound/laser-acoustic -- 10.1.9 Laser excited/active/spot thermography -- 10.1.10 Laser scabbling/drilling -- 10.1.11 Terrestrial laser scanning -- 10.1.12 Other laser-based techniques -- 10.1.13 Laser safety -- 10.1.14 Summary -- Appendix -- Calculation of the speed of light -- References -- 11 -- Vision-based sensing for assessing and monitoring civil infrastructures -- 11.1 Introduction -- 11.2 Vision-based measurement techniques for civil engineering applications -- 11.3 Important issues for vision-based measurement techniques -- 11.3.1 Camera calibration -- 11.3.2 Target and correspondence -- 11.3.3 Camera movement -- 11.4 Applications for vision-based sensing techniques -- 11.4.1 Small-scale building model test -- 11.4.2 Large-scale steel building frame test -- 11.4.3 Wind tunnel bridge sectional model test -- 11.4.4 Bridge cable test -- 11.4.5 Pedestrian bridge test -- 11.5 Conclusions -- Acknowledgment -- References -- 12 -- Introduction to wireless sensor networks for monitoring applications: principles, design, and selection -- 12.1 Introduction and motivation -- 12.1.1 State-of-the-practice -- 12.1.2 State-of-the-art -- 12.2 Overview of wireless networks -- 12.3 Hardware design and selection. 
500 |a 12.3.1 Anatomy of a wireless sensor. 
506 |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty 
590 |a Knovel  |b Knovel (All titles) 
650 0 |a Materials  |x Testing. 
650 0 |a Detectors. 
655 7 |a elektronické knihy  |7 fd186907  |2 czenas 
655 9 |a electronic books  |2 eczenas 
700 1 |a Sohn, Hoon. 
700 1 |a Wang, Ming L. 
776 0 8 |i Print version:  |a Lynch, Jerome P.  |t Sensor Technologies for Civil Infrastructures  |d San Diego : Elsevier Science & Technology,c2022  |z 9780081026960 
830 0 |a Woodhead Publishing Series in Civil and Structural Engineering Ser. 
856 4 0 |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpSTCIVSH1/sensor-technologies-for?kpromoter=marc  |y Full text