Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance : Towards Zero Carbon Transportation.
Saved in:
Other Authors: | , |
---|---|
Format: | eBook |
Language: | English |
Published: |
San Diego :
Elsevier Science & Technology,
2022.
|
Edition: | 2nd ed. |
Series: | Woodhead Publishing Series in Energy Ser.
|
Subjects: | |
ISBN: | 0323900283 9780323900287 |
Physical Description: | 1 online resource (800 pages). |
LEADER | 11344cam a2200469Mi 4500 | ||
---|---|---|---|
001 | kn-on1341452768 | ||
003 | OCoLC | ||
005 | 20240717213016.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 220730s2022 cau o ||| 0 eng d | ||
040 | |a SFB |b eng |e rda |e pn |c SFB |d VLB |d EBLCP |d OCLCQ |d ZCU |d OCLCQ |d OCLCO |d SXB |d OCLCQ | ||
020 | |a 0323900283 | ||
020 | |a 9780323900287 | ||
035 | |a (OCoLC)1341452768 |z (OCoLC)1337944440 | ||
245 | 0 | 0 | |a Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance : |b Towards Zero Carbon Transportation. |
250 | |a 2nd ed. | ||
264 | 1 | |a San Diego : |b Elsevier Science & Technology, |c 2022. | |
264 | 4 | |c ©2022. | |
300 | |a 1 online resource (800 pages). | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Woodhead Publishing Series in Energy Ser. | |
505 | 0 | |a Front Cover -- Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance -- Copyright Page -- Contents -- List of contributors -- About the authors -- Woodhead Publishing Series in Energy -- 1 Introduction -- 1.1 Introduction -- 1.2 Technology roadmaps to deliver low carbon targets -- 1.3 Vehicle technology contributions to low carbon targets -- 1.4 Powertrain technology contributions to low-carbon targets -- 1.5 Regulatory requirements and consumer trends -- 1.6 Traffic management factors -- 1.7 Global manufacturing and consumer trends -- 1.8 Commercial vehicles and buses -- 1.9 Electrification of transport technology -- 1.10 Current and future trends -- 1.11 Affordability and consumer appeal -- 1.12 Long-term vision: solar energy/hydrogen economy -- 1.13 Conclusion -- Acknowledgements -- Further reading -- I. Alternative Fuels, advanced additives and oils to improve environmental performance -- 2 The role of alternative and renewable liquid fuels in environmentally sustainable transport -- 2.1 Introduction -- 2.1.1 Competing fuels and energy carriers -- 2.1.2 Onboard energy density -- 2.1.3 Vehicle cost -- 2.1.4 Environmental benefits -- 2.2 Market penetration of biodiesel -- 2.3 Market penetration of alcohol fuels -- 2.3.1 Brazil -- 2.3.2 United States -- 2.3.3 European union -- 2.3.4 China -- 2.4 Future provision of alternative liquid fuels: the biomass limit -- 2.5 Beyond the biomass limit: sustainable organic fuels for transport -- 2.5.1 Recycling CO2 -- 2.5.2 Fuel synthesis -- 2.6 Renewable fuels within an integrated renewable energy system -- 2.7 Conclusions -- 2.8 Update for 2021 -- Acknowledgments -- References -- 3 Using alternative and renewable liquid fuels to improve the environmental performance of internal combustion engines: key... -- 3.1 Introduction. | |
505 | 8 | |a 3.2 The use of biodiesel in internal combustion engines: fatty acid methyl esters and hydrogenated vegetable oil -- 3.3 Alcohol fuels: physicochemical properties -- 3.3.1 Volumetric energy density and stoichiometry -- 3.3.2 Vapour pressure -- 3.3.3 Octane numbers -- 3.4 Alcohol fuels for spark-ignition engines: effects on performance and efficiency -- 3.4.1 Performance -- 3.4.2 Efficiency -- 3.4.3 The efficiency of dedicated alcohol engines -- 3.5 Alcohol fuels for spark-ignition engines: pollutant emissions, deposits and lubricant dilution -- 3.6 Alcohol fuels for compression-ignition engines -- 3.7 Vehicle and blending technologies for alternative liquid fuels: flexible-fuel vehicles -- 3.8 Vehicle and blending technologies for alternative liquid fuels: ethanol-gasoline and methanol-gasoline bi-fuel vehicles -- 3.9 Vehicle and blending technologies for alternative liquid fuels: tri-flex-fuel vehicles and isostoichiometric ternary blends -- 3.9.1 Isostoichiometric ternary blends -- 3.10 Conclusions -- Acknowledgements -- References -- Further reading -- 4 Alternative and renewable gaseous fuels to improve vehicle environmental performance -- 4.1 Update to the 2021 edition -- 4.2 Introduction -- 4.3 Fossil natural gas -- 4.4 Fossil natural gas production, transmission and distribution -- 4.4.1 Distribution of compressed natural gas -- 4.4.2 Distribution of liquefied natural gas -- 4.5 Natural gas engines and vehicles -- 4.5.1 Spark-ignition lean burn engines -- 4.5.2 Spark-ignition stoichiometric engines -- 4.5.3 Compression-ignition dual-fuel engines -- 4.5.4 Off-road vehicles -- 4.5.5 Onboard fuel storage -- 4.6 Biomethane/biogas -- 4.7 Biogas production, distribution and storage -- 4.7.1 Purification to biomethane -- 4.7.1.1 Absorption -- 4.7.1.2 Adsorption -- 4.7.1.3 Membrane separation -- 4.7.1.4 Cryogenic distillation. | |
505 | 8 | |a 4.7.2 Distribution of gaseous biomethane -- 4.7.3 Distribution of liquid biomethane -- 4.7.4 Bulk storage -- 4.8 Liquefied petroleum gas -- 4.9 LPG production, distribution, storage and use in vehicles -- 4.9.1 LPG vehicles and fuel delivery systems -- 4.9.2 Vapour pressure systems -- 4.9.3 Liquid injection systems -- 4.10 Hydrogen -- 4.11 Hydrogen production, distribution, storage and use in vehicles -- 4.12 Ammonia -- 4.13 Lifecycle analysis of alternative gaseous fuels -- 4.14 Future trends -- Acknowledgments -- References -- Further reading -- 5 Electricity as an energy vector for transportation vehicles -- 5.1 Introduction -- 5.2 Generation -- 5.2.1 Type 1: mechanical to electrical energy conversion -- 5.2.2 Type 2: photovoltaic -- 5.3 Transmission and distribution -- 5.3.1 Transmission -- 5.3.2 Distribution -- 5.3.3 Access to charging points -- 5.4 Storage -- 5.5 The nature of electrical energy -- 5.5.1 Storing electricity -- 5.5.1.1 Electricity can be stored as itself: electrostatics in capacitors -- 5.5.1.2 Using an artifact of current flow: inductance -- 5.5.2 Converting into other forms of energy for storage -- 5.5.2.1 Mechanical -- 5.5.2.2 Chemical -- 5.5.2.3 Lithium-ion battery storage -- 5.6 Onboard energy storage (battery) -- 5.6.1 Safety -- 5.6.2 Supply chain and cost -- 5.7 Onboard energy storage (hydrogen) -- 5.7.1 Fuel cells -- 5.7.2 H2 ICE -- 5.7.2.1 Hydrogen with a diesel pilot -- 5.7.2.2 Hydrogen with a spark -- 5.7.2.3 Hydrogen with a glow plug -- 5.8 Concluding remarks -- Further reading -- 6 Hydrogen as an energy vector for transportation vehicles -- 6.1 Introduction -- 6.2 Overview of hydrogen production -- 6.2.1 Steam methane reformation -- 6.2.2 Coal gasification -- 6.2.3 Electrolysis -- 6.2.4 High-temperature conversion from nuclear energy -- 6.2.5 By-product and industrial hydrogen. | |
505 | 8 | |a 6.2.6 Green versus blue versus brown hydrogen production -- 6.3 Overview of electricity production -- 6.4 Hydrogen storage and transportation -- 6.4.1 Large-scale storage -- 6.4.1.1 Cryogenic -- 6.4.1.2 Underground -- 6.4.2 Small-scale storage -- 6.4.2.1 Compressed -- 6.4.2.2 Cryogenic and cryocompressed hydrogen -- 6.4.2.3 Metal hydride -- 6.4.2.4 Surface adsorption -- 6.4.3 Transportation -- 6.5 Conclusions -- References -- 7 Advanced engine oils -- 7.1 Introduction -- 7.2 The role of the lubricant in a modern internal combustion engine -- 7.2.1 Safeguarding engine durability -- 7.2.2 Contributing to the fuel economy of the engine -- 7.2.3 Helping to maintain a low level of emissions -- 7.3 The composition of a typical modern engine lubricant -- 7.4 Diesel engine lubrication challenges -- 7.5 Gasoline engine lubrication challenges -- 7.6 Industry and original equipment manufacturer specifications for engine oils -- 7.7 Lubricating modern engines in developing markets -- 7.8 Future engine oil evolution -- 7.8.1 Future fuel economy challenges -- 7.8.2 Future emissions challenges -- 7.8.3 Future fuel challenges -- 7.8.4 New materials -- 7.9 Summary -- Acknowledgments -- References -- Further reading -- 8 Advanced fuel additives for modern internal combustion engines -- 8.1 Introduction -- 8.2 Additive types and their impact on conventional and advanced fuels -- 8.2.1 Antioxidants and stabilizers -- 8.2.2 Cold flow improvers -- 8.2.3 Filter blocking tendency -- 8.2.4 Lubricity improvers and friction modifiers -- 8.2.5 Ferrous corrosion inhibitors -- 8.2.6 Other corrosion inhibitors -- 8.2.7 Conductivity improvers -- 8.3 Impacts of additives on combustion characteristics -- 8.3.1 Diesel ignition improving additives -- 8.3.2 Octane-improving additives -- 8.4 Diesel performance and deposit control additives -- 8.4.1 Injector nozzle coking. | |
505 | 8 | |a 8.4.2 Diesel injector internal deposits -- 8.4.3 Diesel performance additive packages -- 8.5 Gasoline performance and deposit control additives -- 8.5.1 Gasoline engine deposits -- 8.5.2 Gasoline performance additive packages -- 8.5.3 Cleanliness and performance of port fuel-injected gasoline engines -- 8.5.4 Gasoline direct injection engines and injector plugging -- 8.5.5 Effects of ethanol on deposit formation -- 8.6 Conclusions and future trends -- Acknowledgments -- References -- II. Improving engine and vehicle design -- 9 Internal combustion engine cycles and concepts -- 9.1 Introduction -- 9.2 Ideal engine operation cycles -- 9.2.1 Two-stroke cycle -- 9.2.2 Four-stroke cycle -- 9.2.3 Ideal cycle analysis and theoretical efficiency limits -- 9.2.3.1 Constant volume ideal heat addition -- 9.2.3.2 Constant pressure ideal heat addition -- 9.2.3.3 Limited pressure ideal heat addition -- 9.2.3.4 Ideal heat addition method comparison -- 9.3 Alternative engine operating cycles -- 9.3.1 Overexpanded cycle -- 9.3.1.1 Atkinson cycle -- 9.3.1.2 Miller cycle -- 9.3.1.3 Implementation of overexpanded cycles -- 9.3.2 Split cycle engines -- 9.3.2.1 Scuderi split cycle -- 9.3.2.2 Stirling split cycle -- 9.3.3 Rotary engine -- 9.3.4 Free-piston engine -- 9.3.5 Dual-fuel engines -- 9.3.6 Opposed-piston engines -- 9.4 Comparison of engine cycle performance -- 9.4.1 Actual engine cycles -- 9.4.1.1 Spark ignition engines -- 9.4.1.2 Compression ignition engines -- 9.4.2 Limitations -- 9.4.2.1 Friction -- 9.4.2.2 Heat transfer -- 9.4.2.3 Throttling -- 9.4.2.4 Boosting -- 9.4.3 Impact of fuel type -- 9.4.4 Convergence of spark ignition and compression ignition engines -- 9.5 Advantages and limitations of internal combustion engines -- 9.6 Conclusion and future trends -- 9.7 Sources of further information and advice -- References. | |
500 | |a 10 Heavy-duty vehicles and powertrains: technologies and systems that enable 'zero' air quality and greenhouse gas emission. | ||
506 | |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty | ||
590 | |a Knovel |b Knovel (All titles) | ||
650 | 0 | |a Alternative fuel vehicles. | |
650 | 0 | |a Transportation, Automotive |x Environmental aspects. | |
650 | 0 | |a Transportation, Automotive |x Technological innovations. | |
655 | 7 | |a elektronické knihy |7 fd186907 |2 czenas | |
655 | 9 | |a electronic books |2 eczenas | |
700 | 1 | |a Folkson, Richard, |e editor. | |
700 | 1 | |a Sapsford, Steve, |e editor. | |
776 | 0 | 8 | |i Print version: |a Folkson, Richard |t Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance |d San Diego : Elsevier Science & Technology,c2022 |z 9780323909792 |
830 | 0 | |a Woodhead Publishing Series in Energy Ser. | |
856 | 4 | 0 | |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpAFAVTIE8/alternative-fuels-and?kpromoter=marc |y Full text |