Devices and systems for laboratory automation

Saved in:
Bibliographic Details
Main Authors Thurow, Kerstin (Author), Junginger, Steffen (Author)
Format Electronic eBook
LanguageEnglish
Published Weinheim, Germany : Wiley-VCH GmbH, [2023]
Subjects
Online AccessFull text
ISBN9783527829422
3527829423
9783527829446
352782944X
3527348328
9783527348329
Physical Description1 online resource

Cover

Table of Contents:
  • Cover
  • Title Page
  • Copyright
  • Contents
  • Chapter 1 Introduction
  • 1.1 A Short Definition of Laboratory Automation
  • 1.2 Short History of Laboratory Automation
  • 1.2.1 Early Developments in Laboratory Automation
  • 1.2.2 Advances in the Automation of Clinical Laboratories
  • 1.2.3 Developments in Pharmaceutical Research
  • 1.3 Laboratory Applications and Requirements
  • 1.3.1 Bioscreening and Pharmaceutical Testing
  • 1.3.1.1 Enzymatic Assays
  • 1.3.1.2 Cell-Based Assays
  • 1.3.1.3 ELISAs
  • 1.3.1.4 DNA/RNA Extraction, Purification, and Quantification
  • 1.3.1.5 PCR/RT-PCR/q-PCR
  • 1.3.1.6 Gene Expression Analysis
  • 1.3.1.7 Next-Generation Sequencing
  • 1.3.1.8 Cell Culturing
  • 1.3.1.9 Requirements
  • 1.3.2 Clinical Applications
  • 1.3.2.1 Determination of Classical Parameter
  • 1.3.2.2 Determination of Vitamins
  • 1.3.2.3 Determination of Drugs of Abuse
  • 1.3.2.4 Requirements
  • 1.3.3 Classical Analytical Applications
  • 1.3.3.1 Food Analysis
  • 1.3.3.2 Environmental Analysis
  • 1.3.3.3 Requirements
  • 1.4 The Goal of this Book
  • References
  • Chapter 2 Basic Concepts and Principles of Laboratory Automation
  • 2.1 The LUO Concept in Laboratory Automation
  • 2.1.1 Laboratory Unit Operation Concept
  • 2.1.2 Classes of Laboratory Systems and Devices
  • 2.1.3 General Automation Strategies in Laboratory Automation
  • 2.2 Advantages and Limitations of Laboratory Automation
  • 2.2.1 Advantages of Laboratory Automation
  • 2.2.2 Limitations of Laboratory Automation
  • 2.2.3 Error Handling in Laboratory Automation
  • 2.3 Economic Potential of Laboratory Automation
  • 2.3.1 Market Dynamics
  • 2.3.2 Market Shares by Region
  • 2.3.3 Market Shares by Application
  • 2.3.4 Market Shares by Users
  • 2.3.5 Market Share by Vendors
  • References
  • Chapter 3 Formats in Laboratory Automation
  • 3.1 Formats in Biological Applications.
  • 3.1.1 Introduction
  • 3.1.2 Characteristics of Microplates
  • 3.1.3 Lids and Sealing Systems for Microtiter Plates
  • 3.1.3.1 Lids
  • 3.1.3.2 Foils and Films
  • 3.1.3.3 Mats
  • 3.1.3.4 RoboLid
  • 3.1.3.5 Advantages and Disadvantages of Locking Systems
  • 3.1.3.6 Application Areas of Locking Systems
  • 3.1.4 Market Potential and Commercially Available Systems
  • 3.1.4.1 Microtiter Plates Market
  • 3.1.4.2 Market Lids and Sealing Systems
  • 3.2 Formats in Clinical Applications
  • 3.2.1 Collection of Blood Samples
  • 3.2.2 Collection of Urine Samples
  • 3.2.3 Collection of Further Examination Material
  • 3.3 Formats in Classical Analytical Applications
  • 3.4 Automated Handling of Labware
  • 3.4.1 Automated Handling of MTP and Covers
  • 3.4.1.1 Handling of Microtiter Plates and Lids
  • 3.4.1.2 Automated Handling of Foils and Films
  • 3.4.2 Automated Handling of Single Samples
  • 3.4.2.1 Automated Transport
  • 3.4.2.2 Automated Opening/Closing of Single Samples
  • References
  • Chapter 4 Liquid Handling in Laboratory Automation
  • 4.1 Introduction
  • 4.1.1 Definition and General Introduction
  • 4.1.2 Short History of Liquid Handling
  • 4.1.3 Use of Liquid Handling Systems
  • 4.2 Liquid Handling Technologies
  • 4.2.1 Pipetting Technologies
  • 4.2.2 Aspiration Methods
  • 4.3 Critical Liquid Handling Parameters and Error Sources in Liquid Handling
  • 4.3.1 Important Liquid Handling Parameters
  • 4.3.2 Physical Influencing Factors
  • 4.3.3 Error Sources in Liquid Handling
  • 4.3.4 Liquid Handling Performance Monitoring
  • 4.4 Market Potential and Systems
  • 4.4.1 Market Potential for Liquid Handling Systems
  • 4.4.2 General Channel Configurations
  • 4.4.3 Liquid Handling Systems with 1-8 Channels
  • 4.4.4 Multichannel Systems
  • 4.4.5 Liquid Handling Accessories
  • References
  • Chapter 5 Low-Volume Liquid Delivery
  • 5.1 Introduction.
  • 5.2 Contact-Based Dispenser Technologies
  • 5.2.1 Pin Tools
  • 5.2.2 Dispensers with Fixed Tips
  • 5.2.3 Dispensers with Disposable Tips
  • 5.2.4 Summary
  • 5.3 Contactless Dispenser Technologies
  • 5.3.1 Displacement Dispensers
  • 5.3.1.1 Peristaltic Pumps
  • 5.3.1.2 Ceramic Pumps
  • 5.3.2 Valve-Based Dispensers
  • 5.3.2.1 Solenoid Valve Dispensers
  • 5.3.2.2 Piezoelectric Valve-Based Dispensers
  • 5.3.3 Capillary Sipper
  • 5.3.4 Acoustic Dispensers
  • 5.3.5 Summary
  • 5.4 Application Areas and Requirements for Low-Volume Dispensing
  • 5.4.1 Application Areas for Low-Volume Dispensing
  • 5.4.2 Requirements for Low-Volume Dispensing
  • 5.5 Overview of Low-Volume Dispensers
  • 5.5.1 Positive Displacement Systems
  • 5.5.2 Piezoelectric Dispenser
  • 5.5.3 Acoustic Dispensers
  • 5.5.4 Additional Systems
  • References
  • Chapter 6 Solid Dispensing
  • 6.1 Introduction
  • 6.2 Factors Influencing the Dosing of Solids
  • 6.2.1 Flow Behavior of Bulk Solids
  • 6.2.2 Density of Solids
  • 6.2.3 Fluidization of Bulk Materials
  • 6.3 Solid-Dispensing Technologies
  • 6.3.1 Volumetric Dosing Methods
  • 6.3.2 Gravimetric Dosing Methods
  • 6.3.3 Dosing Methods in Laboratory Automation
  • 6.4 Solid Dispensing Systems
  • References
  • Chapter 7 Devices for Sample Preparation
  • 7.1 Introduction
  • 7.2 Automated Heating, Cooling, and Mixing
  • 7.2.1 Introduction
  • 7.2.2 Automated Heating and Cooling
  • 7.2.3 Automated Thermocycler
  • 7.2.4 Automated Mixing/Shaking
  • 7.2.4.1 Introduction
  • 7.2.4.2 Automated Shaking
  • 7.2.4.3 Automated Stirring
  • 7.2.5 Combined Solutions for Mixing and Temperature Control
  • 7.3 Automated Incubation
  • 7.3.1 Introduction
  • 7.3.2 Important Parameter
  • 7.3.3 Incubation Systems in the Laboratory
  • 7.3.4 Market Situation
  • 7.4 Automated Centrifugation
  • 7.4.1 Introduction
  • 7.4.2 Requirements
  • 7.4.3 Market Situation and Systems.
  • 7.5 Automated Filtration
  • 7.6 Automated Solid Phase Extraction
  • 7.6.1 Introduction and Requirements
  • 7.6.2 Semiautomated Systems
  • 7.6.3 Requirements for Automated SPE Systems
  • 7.6.4 Automated Single Sample Processing Systems
  • 7.6.5 Automated Parallel Processing Systems with Limited Parallelity
  • 7.6.6 High Parallel Systems
  • 7.6.7 Labware for Automated Solid Phase Extraction
  • 7.7 Automated Sonication
  • 7.7.1 Basics and Applications of Ultrasonic Systems
  • 7.7.2 Market Situation and Systems
  • 7.8 Automated Evaporation
  • 7.8.1 Introduction
  • 7.8.2 Evaporation Technologies and Application Areas
  • 7.8.3 Market Situation
  • References
  • Chapter 8 Robots in Laboratory Automation
  • 8.1 Robots - A Definition
  • 8.1.1 Historical Development of Laboratory Robotics
  • 8.1.2 Basics and Definitions in Robotics
  • 8.1.3 Robotic Configurations
  • 8.1.4 Robot Programming
  • 8.1.5 Advantages and Disadvantages of Laboratory Robots
  • 8.2 Stationary Robots in Laboratory Automation
  • 8.2.1 Industrial and Collaborative Robots
  • 8.2.2 Market Potential
  • 8.2.3 Available Stationary Robot Systems
  • 8.3 Mobile Robots
  • 8.3.1 Differentiation Between Stationary and Mobile Robots
  • 8.3.2 Application Scenarios for Mobile Robots
  • 8.3.3 Sensor Systems in Mobile Robotics
  • 8.3.4 Market Situation and Available Systems
  • 8.4 Gripper Systems
  • 8.4.1 Mechanical Gripper
  • 8.4.2 Pneumatic Gripper
  • 8.4.3 Magnetic Gripper
  • 8.4.4 Adaptive Gripper
  • 8.4.5 Sensors and Safety Systems in Gripper Systems
  • 8.5 Safety Aspects in Laboratory Automation
  • References
  • Chapter 9 Analytical Measurement Systems
  • 9.1 Absorption-Based Methods
  • 9.1.1 Introduction
  • 9.1.2 Physical Background
  • 9.1.3 Application Areas of Absorption Spectroscopy
  • 9.2 Fluorescence-Based Methods
  • 9.2.1 Introduction
  • 9.2.2 Physical Background.
  • 9.2.3 Application Areas of Fluorescence Spectroscopy
  • 9.3 Market Situation and Available Reader Systems
  • 9.4 Mass Spectrometric Methods
  • 9.4.1 Introduction
  • 9.4.2 Physical Background
  • 9.4.2.1 Ionization
  • 9.4.2.2 Mass Separation Technologies
  • 9.4.2.3 Detection Technologies
  • 9.4.3 Application Areas of Mass Spectrometric Methods
  • 9.4.4 Market Situation and Mass Spectrometry Systems
  • References
  • Chapter 10 Sample Identification in Laboratory Automation
  • 10.1 Introduction
  • 10.2 Barcode Technology
  • 10.2.1 Barcode Types
  • 10.2.2 Barcode Reader Technology
  • 10.2.3 Barcodes in Laboratory Automation
  • 10.2.4 Market Situation for Barcode Readers
  • 10.3 RFID Technology
  • 10.3.1 RFID Methods
  • 10.3.2 Application Areas and Design of RFID Systems
  • 10.3.3 Advantages and Disadvantages of RFID Systems
  • 10.3.4 Market Situation
  • References
  • Chapter 11 Interfaces in Laboratory Automation
  • 11.1 Introduction
  • 11.2 Analog Interfaces
  • 11.3 Digital Interfaces
  • 11.3.1 Parallel Interfaces
  • 11.3.2 Serial Interfaces
  • 11.3.3 Network Interfaces
  • 11.4 Standardization in Laboratory Automation
  • 11.4.1 Introduction
  • 11.4.2 SiLA 2 Standard
  • 11.4.3 Advantages of SiLA 2
  • 11.4.4 Disadvantages of SiLA
  • 11.4.5 Actual Examples for SiLA Integrations
  • References
  • Chapter 12 Laboratory Automation Software
  • 12.1 Introduction
  • 12.2 System Control Software/Process Control Systems
  • 12.2.1 Introduction
  • 12.2.2 Cellario
  • 12.2.3 Green Button Go
  • 12.2.4 Momentum
  • 12.2.5 OneLab
  • 12.2.6 Overlord
  • 12.2.7 SAMI EX
  • 12.2.8 VWorks
  • 12.2.9 Hierarchical Workflow Management System (HWMS)
  • 12.2.10 Summary
  • 12.3 Laboratory Information Management Systems
  • 12.3.1 Introduction
  • 12.3.2 Core Functionalities of LIMS
  • 12.3.3 LIMS Architectures
  • 12.3.4 Factors Influencing the Selection of a LIMS
  • 12.3.5 LIMS Vendors.