DESIGN OF INJECTION MOLDED PLASTIC PARTS

Saved in:
Bibliographic Details
Main Author Jaroschek, Christoph, 1959- (Author)
Format Electronic eBook
LanguageEnglish
Published [S.l.] : HANSER PUBLICATIONS, 2022.
Subjects
Online AccessFull text
ISBN9781569908945
156990894X
1569908931
9781569908938
Physical Description1 online resource

Cover

Table of Contents:
  • Intro
  • The Author
  • Preface
  • Contents
  • 1 Plastic Parts
  • 1.1 General Information
  • 1.1.1 Comparison of Designs (Conventional vs. Plastic)
  • 1.1.2 Special Features of Plastics
  • 1.1.2.1 Comparison of the Properties of Plastics and Metals
  • 1.1.2.2 Special Mechanical Behavior
  • 1.1.3 Reasons for Using Plastics
  • 1.2 Design Rules
  • 1.2.1 Special Design Features of Injection Molded Parts
  • 1.2.1.1 Demoldability
  • 1.2.1.2 Flow Path to Wall Thickness Ratio
  • 1.2.1.3 Sprue Position
  • 1.2.1.4 Avoiding Material Accumulation, Thin Wall Thickness
  • 1.2.1.5 Stiffeners
  • 1.2.1.6 Dimensional Change due to Temperature Fluctuations
  • 1.3 Dimensional Deviations between CAD and Injection Molded Part
  • 1.3.1 Shrinkage
  • 1.3.2 Warpage
  • 1.3.3 Corrective Measures for Dimensional Deviations
  • 1.4 Design of Connections
  • 1.4.1 Screw Fasteners
  • 1.4.2 Snap-Fit Connections
  • 1.4.3 Bonding and Welding of Seams
  • 1.4.3.1 Adhesive-Bonded Joints
  • 1.4.3.2 Welded Joints
  • 1.4.3.3 Film Hinges
  • 1.5 Tolerances and Dimensions
  • 1.6 Sizing
  • 2 The Injection Molding Manufacturing Process
  • 2.1 The Process and What the Designer Should Know
  • 2.1.1 Flow Path Lengths Are Limited
  • 2.1.2 Molded Part Area Determines Machine Size
  • 2.1.3 Wall Thicknesses Determine the Cooling Time
  • 2.1.4 Plastic Shrinks as It Cools
  • 2.2 Influence of the Process on Component Properties
  • 2.2.1 Weld Lines, Meld Lines
  • 2.2.2 Surface Quality
  • 2.3 Fiber Orientations Influence the Component Dimensions
  • 2.4 Forward-Looking Quality Assurance
  • 2.4.1 Sink Marks
  • 2.4.2 Jetting
  • 2.4.3 Diesel Effect
  • 2.4.4 Incomplete Filling, Burr Formation, and Deformation during Demolding
  • 2.5 Special Injection Molding Techniques
  • 2.5.1 Multi-Component Technology
  • 2.5.1.1 General Procedure
  • 2.5.1.2 Molding Techniques
  • 2.5.1.3 Component Design.
  • 2.5.2 Fluid Injection Technology (FIT)
  • 2.5.2.1 Processes
  • 2.5.2.2 Component Design
  • 3 Molds
  • 3.1 General Tasks and Functions
  • 3.2 Manufacture and Costs
  • 3.2.1 General Machining
  • 3.2.2 Surfaces
  • 3.2.2.1 EDM
  • Electrical Discharge Machining
  • 3.2.2.2 Etching
  • 3.2.2.3 Laser Texturing
  • 3.2.2.4 Ceramic Surfaces
  • 3.2.3 Steels
  • 3.3 Standard Elements
  • 3.4 Melt Feed
  • 3.4.1 Cold Runners
  • 3.4.1.1 Cavity Layout
  • 3.4.1.2 Gating to Cavities
  • 3.4.1.3 Demolding of the Runner System
  • 3.4.2 Mold with Pre-Chamber Nozzle
  • 3.4.3 Insulating Channels
  • 3.4.4 Hot Runners
  • 3.4.4.1 Internally Heated Systems
  • 3.4.4.2 Externally Heated Systems
  • 3.4.4.3 Hot Runner Nozzles
  • 3.4.4.4 Cascade Technology
  • 3.5 Temperature Control
  • 3.5.1 Concepts for Temperature Control
  • 3.5.1.1 Continuous Flow Temperature Control
  • 3.5.1.2 Pulse Cooling/Discontinuous Temperature Control
  • 3.5.1.3 Variothermal or Intermittent Temperature Control
  • 3.5.2 Implementation
  • 3.6 Demolding
  • 3.6.1 Straight-Line Demolding in the Axial Direction of the Opening Movement
  • 3.6.2 Demolding of Contour Areas That Are Not Parallel with the Opening Movement
  • 3.6.3 Demolding of Internal Undercuts
  • 3.6.4 Demolding of Internal Threads
  • 3.7 Increasing Efficiency with Two Parting Planes
  • 3.7.1 Stack Molds
  • 3.7.2 Tandem Molds
  • 3.7.3 Design Features of Stack and Tandem Molds
  • 3.7.4 Hot Runner Technology for Stack and Tandem Molds
  • 4 Simulation
  • 4.1 Goals of Simulation
  • 4.1.1 Filling Simulation (Rheological Simulation) for Good Surfaces
  • 4.1.2 Warpage Prediction
  • 4.1.3 Heat-Flux Analysis
  • 4.1.4 Calculation of Mechanical Stability (Structural Mechanics)
  • 4.2 Base Models for the Rheological Simulation
  • 4.2.1 Shape Models
  • 4.2.2 Calculation Models
  • 4.2.3 Material Models
  • 4.3 Examples and Calculation Results
  • 4.3.1 Filling Behavior.
  • 4.3.2 Holding Pressure Phase
  • 4.3.3 Warpage
  • 5 Material Selection
  • 5.1 Usual Procedure for Selecting Materials
  • 5.1.1 Selection Criterion: Temperature
  • 5.1.2 Selection Criterion: Chemical Load
  • 5.1.3 Selection Criterion: Mechanical Load
  • 5.1.4 Selection Criterion: Special Requirement
  • 5.1.5 Databases
  • 5.2 Important Characteristic Values
  • 5.2.1 Characteristic Temperatures
  • 5.2.1.1 Glass Transition Temperature
  • 5.2.1.2 Melting Temperature
  • 5.2.1.3 Degradation Temperature
  • 5.2.2 Heat Deflection Temperature
  • 5.2.3 Continuous Service Temperature
  • 5.2.4 Young's Modulus and Creep Modulus
  • 5.2.5 Temperature Function of Young's Modulus
  • 5.3 Limits on Mechanical Design
  • 5.3.1 Short-Term Loads
  • 5.3.2 Long-Term Loads
  • 5.3.3 Estimation of Design Limits Using Reduction Factors
  • Index.