IoT and spacecraft informatics

Saved in:
Bibliographic Details
Other Authors: Yung, K. L., (Editor), Ip, Andrew W. H., (Editor), Xhafa, Fatos, (Editor), Tseng, K. K., (Editor)
Format: eBook
Language: English
Published: Amsterdam : Elsevier, 2022.
Series: Aerospace engineering
Subjects:
ISBN: 9780128210529
0128210524
9780128210512 (pbk.)
Physical Description: 1 online resource.

Cover

Table of contents

Description
Item Description: 1. Artificial intelligence approach for aerospace defect detection using single-shot multibox detector network in phased array ultrasonic<br>2. Classifying asteroid spectra by data-driven machine learning model<br>3. Recognition of target spacecraft based on shape features<br>4. Internet of things, an insight to digital twins and case studies<br>5. Subspace tracking for time-varying direction-of-arrival estimation with sensor arrays<br>6. An overview of optimization and resolution methods in satellite scheduling and spacecraft operation: description, modeling, and application<br>7. Colored Petri net modeling of the manufacturing processes of space instruments<br>8. Product performance model for product innovation, reliability and development in high-tech industries and a case study on the space instrument industry<br>9. Monocular simultaneous localization and mapping for a space rover application<br>10. Reliability and health management of spacecraft
ISBN: 9780128210529
0128210524
9780128210512 (pbk.)
Access: Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty