Beginning deep learning with TensorFlow work with Keras, MNIST data sets, and advanced neural networks

Incorporate deep learning into your development projects through hands-on coding and the latest versions of deep learning software, such as TensorFlow 2 and Keras. The materials used in this book are based on years of successful online education experience and feedback from thousands of online learn...

Full description

Saved in:
Bibliographic Details
Main Authors: Long, Liangqu, (Author), Zeng, Xiangming, (Author)
Format: Electronic
Language: English
Published: [United States] : Apress, 2022.
Subjects:
ISBN: 9781484279151
1484279158
148427914X
9781484279144
Physical Description: 1 online resource

Cover

Table of contents

LEADER 03513cam a2200373 a 4500
001 kn-on1294216402
003 OCoLC
005 20240717213016.0
006 m o d
007 cr cn|||||||||
008 220130s2022 xxu ob 001 0 eng d
040 |a YDX  |b eng  |c YDX  |d GW5XE  |d EBLCP  |d ORMDA  |d OCLCO  |d OCLCF  |d N$T  |d OCLCQ  |d OCLCO  |d OCLCL  |d OCLCQ 
020 |a 9781484279151  |q (electronic bk.) 
020 |a 1484279158  |q (electronic bk.) 
020 |z 148427914X 
020 |z 9781484279144 
024 7 |a 10.1007/978-1-4842-7915-1  |2 doi 
035 |a (OCoLC)1294216402  |z (OCoLC)1294286029  |z (OCoLC)1295277677 
100 1 |a Long, Liangqu,  |e author. 
245 1 0 |a Beginning deep learning with TensorFlow  |h [electronic resource] :  |b work with Keras, MNIST data sets, and advanced neural networks /  |c Liangqu Long, Xiangming Zeng. 
260 |a [United States] :  |b Apress,  |c 2022. 
300 |a 1 online resource 
505 0 |a Chapter 1: Introduction to Artificial Intelligence -- Chapter 2. Regression -- Chapter 3. Classification -- Chapter 4. Basic Tensorflow -- Chapter 5. Advanced Tensorflow -- Chapter 6. Neural Network -- Chapter 7. Backward Propagation Algorithm -- Chapter 8. Keras Advanced API -- Chapter 9. Overfitting -- Chapter 10. Convolutional Neural Networks -- Chapter 11. Recurrent Neural Network -- Chapter 12. Autoencoder -- Chapter 13. Generative Adversarial Network (GAN) -- Chapter 14. Reinforcement Learning -- Chapter 15. Custom Dataset. 
506 |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty 
520 |a Incorporate deep learning into your development projects through hands-on coding and the latest versions of deep learning software, such as TensorFlow 2 and Keras. The materials used in this book are based on years of successful online education experience and feedback from thousands of online learners. You'll start with an introduction to AI, where you'll learn the history of neural networks and what sets deep learning apart from other varieties of machine learning. Discovery the variety of deep learning frameworks and set-up a deep learning development environment. Next, you'll jump into simple classification programs for hand-writing analysis. Once you've tackled the basics of deep learning, you move on to TensorFlow 2 specifically. Find out what exactly a Tensor is and how to work with MNIST datasets. Finally, you'll get into the heavy lifting of programming neural networks and working with a wide variety of neural network types such as GANs and RNNs. Deep Learning is a new area of Machine Learning research widely used in popular applications, such as voice assistant and self-driving cars. Work through the hands-on material in this book and become a TensorFlow programmer! You will: Develop using deep learning algorithms Build deep learning models using TensorFlow 2 Create classification systems and other, practical deep learning applications. 
504 |a Includes bibliographical references and index. 
590 |a Knovel  |b Knovel (All titles) 
630 0 0 |a TensorFlow. 
650 0 |a Machine learning. 
655 7 |a elektronické knihy  |7 fd186907  |2 czenas 
655 9 |a electronic books  |2 eczenas 
700 1 |a Zeng, Xiangming,  |e author. 
776 0 8 |i Print version:  |z 148427914X  |z 9781484279144  |w (OCoLC)1274199383 
856 4 0 |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpBDLTFWK1/beginning-deep-learning?kpromoter=marc  |y Full text