Nanotubes and nanowires
Nanotubes (both of carbon and inorganic materials) can be made in a variety of ways, demonstrating a wide range of fascinating properties. Many of these, such as high mechanical strength and interesting electronic properties relate directly to potential applications. Nanowires have been made from a...
Saved in:
| Main Authors | , , |
|---|---|
| Format | Electronic eBook |
| Language | English |
| Published |
London :
Royal Society of Chemistry,
[2022]
|
| Edition | 3rd edition. |
| Series | RSC nanoscience & nanotechnology ;
52. |
| Subjects | |
| Online Access | Full text |
| ISBN | 9781788019644 1788019644 9781788019637 1788019636 9781788017824 178801782X |
| Physical Description | 1 online resource |
Table of Contents:
- Cover
- Nanotubes and Nanowires: 3rd Edition
- Preface to the Third Edition
- Preface to the Second Edition
- Preface to the First Edition
- Contents
- Chapter 1
- Carbon Nanotubes
- 1.1 Introduction
- 1.2 Synthesis
- 1.2.1 Multi-walled Carbon Nanotubes
- 1.2.1.1 Chemical Vapor Deposition (CVD)
- 1.2.1.2 Plasma-enhanced Chemical Vapor Deposition
- 1.2.1.3 Thermal Chemical Vapor Deposition
- 1.2.1.4 Vapor Phase Growth
- 1.2.1.5 Electrochemical Synthesis
- 1.2.1.6 Use of Supercritical Fluids
- 1.2.1.7 Solvothermal Procedures
- 1.2.1.8 Microwave Synthesis
- 1.2.2 Aligned Nanotube Bundles and Micropatterning
- 1.2.3 Single-walled Carbon Nanotubes
- 1.2.3.1 Optical Plasma Control
- 1.2.3.2 Improvement of Oxidation Resistance
- 1.2.3.3 Laser Vaporization
- 1.2.3.4 Pyrolysis or Vapor Phase Deposition
- 1.2.3.5 Chemical Vapor Deposition (CVD)
- 1.2.3.6 Alcohol Catalytic CVD
- 1.2.3.7 Aerogel-supported Chemical Vapor Deposition
- 1.2.3.8 Laser-assisted Thermal Chemical Vapor Deposition
- 1.2.3.9 CoMoCat Process
- 1.2.3.10 High-pressure CO Disproportionation
- 1.2.3.11 Flame Synthesis
- 1.2.3.12 Sonochemical Route
- 1.2.4 Direct Spinning of Nanotube Yarns
- 1.2.5 Selective Preparation of Semiconducting and Metallic SWNTs
- 1.2.6 Chirality-defined Synthesis of SWNTs
- 1.2.6.1 Direct Controlled Synthesis
- 1.2.6.2 Postsynthesis Separation Approaches
- 1.2.7 Junction Nanotubes
- 1.2.8 Peapods and Double-walled Nanotubes
- 1.2.9 Mechanism of Formation of Nanotubes
- 1.2.10 Purification of SWNTs
- 1.2.11 Separation of Metallic and Semiconducting SWNTs
- 1.3 Structure, Spectra and Characterization
- 1.3.1 General Structural Features
- 1.3.2 Raman and Other Spectroscopies
- 1.3.2.1 The G-band
- 1.3.2.2 The Radial Breathing Mode (RBM)
- 1.3.2.3 Dispersive G'-band (2D band)
- 1.3.2.4 Disorder-induced D Band.
- 1.3.2.5 Optical Spectroscopy
- 1.3.3 Pressure-induced Transformations
- 1.3.4 Electronic Structure
- References
- Chapter 2
- Chemically Modified Nanotubes
- 2.1 Introduction
- 2.2 Doping with Boron and Nitrogen
- 2.3 Intercalation by Alkali Metals
- 2.4 Metal ↔ Semiconductor Transitions Induced by Molecular Interaction
- 2.5 Opening and Filling of Nanotubes
- 2.6 Decoration and Coating
- 2.7 Reactivity, Solubilization and Functionalization
- 2.8 Covalent Functionalization
- 2.8.1 Halogenation
- 2.8.2 End-group Functionalization
- 2.8.3 Cycloaddition
- 2.8.4 Radical Addition
- 2.8.5 Nucleophilic Addition
- 2.8.6 Covalent Polymer Composites
- 2.8.7 Other Covalent Functionalization Methods
- 2.9 Noncovalent Functionalization
- 2.9.1 Noncovalent Polymer Composites
- 2.9.2 Functionalization Using Surfactants and Polyaromatics
- 2.9.3 Interaction with Biomolecules
- 2.9.4 Endrohedral Filling
- 2.10 Functionalization Using Fluorous Chemistry and Click Chemistry
- References
- Chapter 3
- Properties and Applications of Carbon Nanotubes
- 3.1 Electronic Properties
- 3.2 Phase Transitions and Fluid Mechanics
- 3.3 Carbon Nanotube Composites
- 3.4 Applications, Potential and Otherwise
- 3.4.1 Electronic Applications
- 3.4.2 Field-effect Transistors (FETs) and Related Devices
- 3.4.3 Electromechanical Properties
- 3.4.4 Field Emission
- 3.4.5 Energy Storage and Conversion: Supercapacitors, Solar Cells and Actuators
- 3.4.6 Sensors and Probes
- 3.4.7 Biological Aspects
- 3.4.8 Mechanical Properties and Related Devices
- 3.4.9 Lithium Batteries
- 3.4.10 Gas Adsorption and Hydrogen Storage
- 3.4.11 Other Useful Properties and Devices
- References
- Chapter 4
- Inorganic Nanotubes
- 4.1 Introduction
- 4.2 Synthetic Methods
- 4.3 Nanotubes of Different Materials
- 4.3.1 Nanotubes of Elemental Materials.
- 4.3.2 Metal Chalcogenide Nanotubes
- 4.3.3 Pnictide Nanotubes
- 4.3.4 Nanotubes of Carbides and Other Materials
- 4.3.5 Metal Oxide Nanotubes
- 4.3.5.1 SiO2 Nanotubes
- 4.3.5.2 TiO2 Nanotubes
- 4.3.5.3 ZnO, CdO and Al2O3 Nanotubes
- 4.3.5.4 Nanotubes of Vanadium and Niobium Oxides
- 4.3.5.5 Nanotubes of Other Transition Metal Oxides
- 4.3.5.6 Other Binary Oxide Nanotubes
- 4.3.5.7 Nanotubes of Titanates and Other Complex Oxides
- 4.3.5.8 Nanotubes Based on Complex Inorganic Nanostructures
- 4.3.6 Misfit Layered Nanotubes
- 4.3.6.1 Chalcogenide-based Misfit Layered Nanotubes
- 4.3.6.2 Quaternary Misfit Nanotubes
- 4.3.6.3 Oxide-based Misfit Nanotubes
- 4.4 Properties
- 4.4.1 Mechanical Properties
- 4.4.2 Electronic, Magnetic, Optical and Related Properties
- 4.4.2.1 Field-effect Transistors
- 4.4.2.2 Electromechanical Properties
- 4.4.2.3 Optoelectronic Properties
- 4.4.2.4 Field Emission
- 4.4.3 Tribological Properties
- 4.4.4 Thermal Properties
- 4.5 Solubilization and Functionalization
- 4.6 Applications
- References
- Chapter 5
- Synthetic Strategies for Inorganic Nanowires
- 5.1 Introduction
- 5.2 Synthetic Strategies
- 5.2.1 Vapour-phase Growth
- 5.2.1.1 Chemical Vapor Deposition (CVD)
- 5.2.1.2 Laser Ablation Technique
- 5.2.1.3 Molecular-beam Epitaxy
- 5.2.2 Growth Mechanisms
- 5.2.2.1 Vapor-Liquid-Solid (VLS) Growth
- 5.2.2.2 Oxide-assisted Growth
- 5.2.2.3 Vapour-Solid Growth
- 5.2.2.4 Carbothermal Reactions
- 5.2.3 Solution-based Growth
- 5.2.3.1 Anisotropic Structures
- 5.2.3.2 Template-based Synthesis
- 5.2.3.3 Solution-Liquid-Solid Process
- 5.2.3.4 Solvothermal Synthesis
- 5.3 Growth Control and Integration
- References
- Chapter 6
- Elemental Nanowires
- 6.1 Introduction
- 6.2 Silicon
- 6.3 Germanium
- 6.4 Boron
- 6.5 In, Sn, Pb, Sb and Bi
- 6.6 Se and Te
- 6.7 Gold.
- 6.8 Silver
- 6.9 Iron and Cobalt
- 6.10 Nickel and Copper
- 6.11 Other Metals and Alloys
- 6.12 Trimetallic Nanowires
- 6.13 Segmented Heterojunction Nanowires
- References
- Chapter 7
- Metal Oxide Nanowires
- 7.1 MgO
- 7.2 Al2O3, Ga2O3 and In2O3
- 7.3 SnO2
- 7.4 CeO2, SiO2 and GeO2
- 7.5 TiO2
- 7.6 CrO2, MnO2 and Mn3O4
- 7.7 CuxO
- 7.8 ZnO
- 7.9 Vanadium and Tungsten Oxides
- 7.10 Other Binary Oxides
- 7.11 Ternary and Quarternary Oxides
- References
- Chapter 8
- Metal Nitride, Carbide and Boride Nanowires
- 8.1 BN
- 8.2 AlN
- 8.3 GaN
- 8.4 InN
- 8.5 Si3N4 and Si2N2O
- 8.6 Metal Carbide and Boride Nanowires
- 8.6.1 BC
- 8.6.2 SiC
- 8.6.3 Other Carbide Nanowires
- 8.6.4 Borides
- References
- Chapter 9
- Nanowires of Metal Chalcogenides, Phosphides and Other Semiconductor Materials
- 9.1 Metal Chalcogenide
- 9.1.1 CdS
- 9.1.2 CdSe and CdTe
- 9.1.3 PbS, PbSe and PbTe
- 9.1.4 CuS and CuSe
- 9.1.5 ZnS and ZnSe
- 9.1.6 NbS2, NbSe2 and NbSe3
- 9.1.7 Bismuth Chalcogenides
- 9.1.8 Other Chalcogenides
- 9.2 GaAs, InP and Other Semiconductor Nanowires
- 9.2.1 GaAs
- 9.2.2 InP and GaP
- 9.3 Miscellaneous Nanowires
- 9.4 Coaxial Nanowires and Coating Nanowires
- 9.5 Perovskite Nanowires
- 9.5.1 Vapor-phase Synthesis
- 9.5.2 Solution-phase Synthesis
- 9.5.3 Template-assisted Methods
- References
- Chapter 10
- Functionalization and Useful Properties and Potential Applications of Nanowires
- 10.1 Self Assembly and Functionalization
- 10.2 Useful Properties and Potential Applications
- 10.2.1 Optical Properties
- 10.2.2 Photonic Applications of Perovskite NWs
- 10.2.2.1 Perovskite NW Lasers
- 10.2.2.2 Photodetectors
- 10.2.3 Electrical and Magnetic Properties
- 10.2.4 Transistors and Devices
- 10.2.5 Field Emission
- 10.2.6 Energy Storage and Conversion
- 10.2.6.1 Solar Cells.
- 10.2.6.2 Supercapacitor, Lithium Batteries and Fuel Cells
- 10.2.7 Electromechanical Devices
- 10.2.8 Sensor Applications and Other Aspects
- 10.2.9 Mechanical Properties
- 10.2.10 Thermoelectric Properties
- 10.2.11 Biological Aspects
- References
- Subject Index.