Rheology of polymeric systems : principles and applications

"Rheology is applied extensively in polymer, chemical, food processing, and related industries. This book combines the basic concepts and applications by presenting a balanced overview of the principles. With simplified analysis of complex problems, the textbook format provides easy understandi...

Full description

Saved in:
Bibliographic Details
Main Authors Carreau, Pierre J. (Author), De Kee, D. (Author), Chhabra, R. P. (Author)
Format Electronic eBook
LanguageEnglish
Published Munich : Hanser Publishers, 2021.
Edition2nd edition.
Subjects
Online AccessFull text
ISBN9781569907238
1569907234
9781569907221
1569907226
Physical Description1 online resource (645 pages)

Cover

Table of Contents:
  • Intro
  • Preface
  • Contents
  • 1 Introduction
  • 1.1 Definitions and Classification
  • 1.1.1 Purely Viscous or Inelastic Material
  • 1.1.2 Perfectly Elastic Material
  • 1.1.3 Viscoelastic Material
  • 1.2 Non-Newtonian Phenomena
  • 1.2.1 The Weissenberg Effect
  • 1.2.2 Entry Flow, Extrudate Swell, Melt Fracture, and Vibrating Jet
  • 1.2.3 Recoil
  • 1.2.4 Open Syphon
  • 1.2.5 Antithixotropic Effect
  • 1.2.6 Drag Reduction
  • 1.2.7 Hole Pressure Error
  • 1.2.8 Mixing
  • 1.2.9 Bubbles, Spheres, and Coalescence
  • 2 Material Functions and Generalized Newtonian Fluids
  • 2.1 Material Functions
  • 2.1.1 Simple Shear Flow
  • 2.1.2 Sinusoidal Shear Flow
  • 2.1.3 Transient Shear Flows
  • 2.1.4 Elongational Flow
  • 2.2 Generalized Newtonian Models
  • 2.2.1 Generalized Newtonian Fluid
  • 2.2.2 The Power-Law Model
  • 2.2.3 The Ellis Model (Bird, Armstrong, and Hassager, 1987)
  • 2.2.4 The Carreau Model (1972)
  • 2.2.5 The Cross-Williamson Model (1965)
  • 2.2.6 The Four-Parameter Carreau Model (Carreau et al., 1979b)
  • 2.2.7 The De Kee Model (1977)
  • 2.2.8 The Carreau-Yasuda Model (Yasuda, 1979)
  • 2.2.9 The Bingham Model (1922)
  • 2.2.10 The Casson Model (1959)
  • 2.2.11 The Herschel-Bulkley Model (1926)
  • 2.2.12 The De Kee-Turcotte Model (1980)
  • 2.2.13 The Papanastasiou Model (1987)
  • 2.2.14 The Zhu-Kim-De Kee Model (2005)
  • 2.2.15 Viscosity Models for Complex Flow Situations.
  • 2.3 Thixotropy, Rheopexy, and Hysteresis
  • 2.4 Relations Between Material Functions
  • 2.5 Temperature, Pressure, and Molecular Weight Effects
  • 2.5.1 Effect of Temperature on Viscosity
  • 2.5.2 Effect of Pressure on Viscosity
  • 2.5.3 Effect of Molecular Weight on Viscosity
  • 2.6 Problems
  • 2.6.1 Viscosity Data of a PIB Solutiona
  • 2.6.2 Viscosity Data of a CMC Solutiona
  • 2.6.3 The Ellis Modela
  • 2.6.4 Viscosity Data for a PS Solutionb
  • 2.6.5 Rheological Behavior of Drilling Mudsb
  • 2.6.6 The Cross-Williamson Modelb
  • 2.6.7 Viscosity-Molecular Weight Relationshipb
  • 3 Rheometry
  • 3.1 Capillary Rheometry
  • 3.1.1 Rabinowitsch Analysis
  • 3.1.2 End Effects or Bagley Correction
  • 3.1.3 Mooney Correction
  • 3.1.4 Intrinsic Viscosity Measurements
  • 3.2 Coaxial-Cylinder Rheometers
  • 3.2.1 Calculation of Viscosity
  • 3.2.2 End-Effect Corrections
  • 3.2.3 Normal Stress Determination
  • 3.3 Cone-and-Plate Geometry
  • 3.3.1 Viscosity Determination
  • 3.3.2 Normal Stress Determination
  • 3.3.3 Inertial Effects
  • 3.3.4 Criteria for Transient Experiments
  • 3.4 Concentric-Disk Geometry
  • 3.4.1 Viscosity Determination
  • 3.4.2 Normal Stress Difference Determination
  • 3.5 Yield Stress Measurements
  • 3.5.1 Yield Stress Measurement Methods
  • 3.6 Problems
  • 3.6.1 Rabinowitsch-Type Analysisa
  • 3.6.2 Rabinowitsch Analysis for a Yield Stress Fluidb
  • 3.6.3 Viscosity of a High-Density Polyethylenea
  • 3.6.4 Cone-and-Plate Flowb
  • 3.6.5 Parallel-Plate Rheometerb
  • 3.6.6 Falling-Cylinder Viscometerb
  • 3.6.7 Weissenberg Effecta.