Computer-aided design of fluid mixing equipment : a guide and tool for practicing engineers

Saved in:
Bibliographic Details
Main Author: Penney, W. Roy.
Format: eBook
Language: English
Published: Amsterdam : Elsevier, 2021.
Subjects:
ISBN: 9780128189764
0128189762
9780128189757
0128189754
Physical Description: 1 online resource

Cover

Table of contents

LEADER 09157cam a2200409 a 4500
001 kn-on1265085877
003 OCoLC
005 20240717213016.0
006 m o d
007 cr cn|||||||||
008 210826s2021 ne o 000 0 eng d
040 |a YDX  |b eng  |e pn  |c YDX  |d OPELS  |d OCLCO  |d UKMGB  |d UKAHL  |d SFB  |d OCLCQ  |d N$T  |d OCLCO  |d K6U  |d OCLCQ  |d OCLCL 
020 |a 9780128189764  |q (electronic bk.) 
020 |a 0128189762  |q (electronic bk.) 
020 |z 9780128189757 
020 |z 0128189754 
035 |a (OCoLC)1265085877  |z (OCoLC)1287274296  |z (OCoLC)1287864175 
100 1 |a Penney, W. Roy. 
245 1 0 |a Computer-aided design of fluid mixing equipment :  |b a guide and tool for practicing engineers /  |c W. Roy Penney. 
260 |a Amsterdam :  |b Elsevier,  |c 2021. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Front cover -- Half title -- Title -- Copyright -- Contents -- Chapter 1 Introduction -- Best Use of Methods Offered Here -- Other Resources -- Consultants, Vendors, Couses and Videos -- Training Resources Available for Fluid Mixing Technology -- Appendix 1.1: Fluid mixing courses -- Appendix 1.2: Videos -- YouTube and IndustrialMixing Handbooks -- YouTube Videos -- Acknowledgements -- REFERENCES -- Chapter 2 Impeller fundamentals -- Dimensionless Parameters -- Flow and Shear -- Torque per unit volume -- Impeller Pumping Efficiency -- Power-producing Flow and Power-producing Shear -- Radial Flow Impellers -- EXAMPLE PROBLEM 2.1. Viscous Syrup Bending with a Side Entering Agitator in a 30 kgal Tank -- Problem Statement -- Problem Solution -- EXAMPLE PROBLEM 2.2. Viscous Syrup Blending with Propeller Pump in a 30 kgal Tank -- REFERENCES -- Chapter 3 Equipment selection -- Introduction -- "Economy of Scale" is Increasing the Size and Complexity of Agitators -- A Historical Perspective -- Seventy-Five Years Ago -- Forty Years Ago -- Twenty Years Ago (the mid-1990s) -- Move Ahead to Today -- Examples of Impeller Improvements from the 1970s to Today -- Fundamentals for Effective Selection of Fluid Mixing Equipment -- The Standard Geometry -- Flow and Shear -- EXAMPLE PROBLEM 3.1. Making Lye Soap in the Laboratory and in 55 gal (200 L) Drums -- EXAMPLE PROBLEM 3.2. Selecting a Commercially Available Agitator -- EXAMPLE PROBLEM 3.3. Impeller Selection/Power Requirements -- Agitator Vendors: Websites and Videos -- REFERENCES -- Chapter 4 Impeller power and pumping -- Impeller Power Requirements -- Standard Impeller Speeds -- Variable Frequency Drives -- Power Correlations for Standard Impeller Geometries -- Impeller Pumping Correlations -- EXAMPLE PROBLEM 4.1. P, Q, tto, tb -- 6BD in 3 m Fully Baffled Vessel. 
505 8 |a "Economy of Scale" is Increasing the Size and Complexity of Agitators -- EXAMPLE PROBLEM 4.3. Pumping Rate: HE-3 Impeller Compared to the Performance of the 6BD of Example 4.2 -- EXAMPLE PROBLEM 4.4. HE-3 Impeller Compared to the Performance of the 6BD of Example 4.3 at the Same N -- REFERENCES -- Chapter 5 Vortex depth -- Introduction -- Unbaffled Vessels -- Rotating Liquid in a Cylinder (Solid Body Rotation of a Liquid in a Cylinder) -- Comparison of Solid Body Rotation with an Earlier Correlation for Two-bladed Flat Paddles -- Correlations for Vortex Depth for Unbaffled Vessels -- Anchor Impeller in Unbaffled Vessel -- EXAMPLE PROBLEM 5.1. Vortex Depth in an Unbaffled Vessel with an Anchor Agitator -- Partially Baffled Vessels -- EXAMPLE PROBLEM 5.2. Prediction of the Vortex Depth for the Experimental Conditions Utilized for the Data Presented in Fig. 5.3 -- Selection of Impeller, Baffling, and Geometry to Minimize to Have the Vortex Reach the Impeller -- Power Decrease Due to Partial Baffling -- Selection of Optimum Geometry to Maximize Vortex Depth at Minimum Impeller Power -- REFERENCES -- Chapter 6 Tank blending -- Experimental Methods -- Visual Determination -- Colorimetric Methods and Image Processing -- Transient Measurement of Salt Concentration after Injection of a Volume of Tracer Salt Solution -- Transient Measurement of Temperatures after Starting an Impeller in a Temperature Stratified Tank -- Correlation for Predicting Blending Uniformity -- Blending in the Transition and Laminar Flow Regime (NRe, ≈≤ 100) -- Blend Time for Multiple Impellers -- EXAMPLE 6.1. BATCH BLENDING WITH AN HE-3 IMPELLER -- EXAMPLE PROBLEM 6.2. BLENDING WITH A HELICAL RIBBON IMPELLER -- REFERENCES -- Chapter 7 Pipeline mixing -- Introduction -- Selection and Design Considerations -- Pressure Drop -- Blending Considerations -- Mixing Indices. 
505 8 |a EXAMPLE PROBLEM 10.3. Dissolving Time Results for 3 mm Ice Cream Salt in a 1000 gal Vessel -- REFERENCES -- Chapter 11 Gas-liquid dispersions -- Introduction -- Impeller Selection -- Industrial Importance of Gas-Liquid Mixing -- What Will be Considered Here? -- Back to the Fundamentals of Gas Dispersion in Agitated Vessels -- Ungassed Power Requirement -- Gassed Power Requirement -- Impeller Flooding -- Gas Holdup -- Mass Transfer Coefficient -- Gas Dispersion from the Vessel Headspace -- EXAMPLE PROBLEM 11.1. Check of one experimental data point from Saravanan and Joshi [12] to verify (1) the units of Qg are L/s and (2) the accuracy of the correlation -- EXAMPLE PROBLEM 11.2. Oxygenate Johnson Creek at the Johnson Mill, Fayetteville, AR -- EXAMPLE PROBLEM 11.3. Batch Stripping of Oxygen from a Water Batch using Sparged Nitrogen -- REFERENCES -- References of General Reviews -- Chapter 12 Liquid-liquid dispersions -- Introduction -- Literature Survey -- Impeller Selection -- What is Needed to Design/Evaluate Agitators for L/L Dispersions -- Design Methods -- Which Phase is Dispersed? -- EXAMPLE PROBLEM 12.1. Suspension of 50% Sulfuric Acid in Benzene -- Correlations for Predicting Drop Size -- Equilibrium Drop Size -- Transient Drop Size Variation -- Mass Transfer -- EXAMPLE PROBLEM 12.2. Data Reduction for Dahhan's [22] Data -- Run Number 5 -- EXAMPLE PROBLEM. 12.3. Agitated Vessel to Saturate Water with Chlorobenzene -- Consideration of the Dispersed Phase Resistance -- Final Comments Regarding L/L Dispersion in Agitated Vessels -- REFERENCES -- Chapter 13 Compartmented agitated columns -- Introduction -- Design Methods Included in This Chapter -- Vendors -- Explanation of Mechanical Details -- Design Methods -- Interstage Backmixing with Zero Forward Flow -- Entrainment -- Reactor Model Development. 
505 8 |a EXAMPLE PROBLEM 13.1. Saponification of Ethylchloroacetate in a 10 Stage, Agitated, Compartmented Column -- Input (Feed) Variables for the Chemical Reactor (See Attached Excel Program, Sheet 4) -- Output (Effluent) Variables for the Chemical Reactor (SEE attached Excel Program, Sheet 4) -- Geometry-related Parameters (Input and Calculated) -- Flow-related Parameters -- Agitation Parameters -- Reaction Parameters -- Historical Footnote -- REFERENCES -- Chapter 14 Fast competitive/consecutive (C/C) chemical reactions -- Introduction -- Where Do We Start? Two Examples of Feed Blending Problems -- Step-By-Step Guide for Education About Handling C/C Reactions -- Literature Review -- Kinetics of C/C Fast Reactions -- Review of the Literature Pertinent to Scale up -- Scale up of Pipeline Mixers Used for Fast C/C Fast Reactions -- Simple Guidelines -- Final Thoughts and Recommendations -- REFERENCES -- BOOKS AND REVIEW PAPERS -- KINETICS OF C/C FAST REACTIONS -- SCALE UP OF C/C FAST CHEMICAL REACTIONS -- Chapter 15 Scale up -- Introduction -- Scale up of Process Results in Agitated Vessels -- Scale-up Analysis Using Geometrical Similarity -- EXAMPLE PROBLEM 15.1. Making Wallpaper Paste in 4 L and 200 L Vessels -- EXAMPLE PROBLEM 15.2. Scale down of Example Problem 11.2-Aeration of Johnson Creek -- EXAMPLE 15.3. Heat Transfer in Pigment Binder Reactors -- EXAMPLE PROBLEM 15.4. Scale up of the Pigment Binder Reaction to Handle Feed Blending -- EXAMPLE PROBLEM 15.5. Scale up of the APG Reactor from 1 L to 40,000 L -- EXAMPLE PROBLEM 15.6. Scale Down of a 0.4mDiameter L-L Static Mixer Required to Satisfy the Requirements of Example 2 from Streiff et al. [17] -- Original Problem Statement -- EXAMPLE PROBLEM 15.7. Scale up of the Third Bourne Reaction in a Semibatch Agitated Reactor. 
506 |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty 
590 |a Knovel  |b Knovel (All titles) 
650 0 |a Mixing machinery  |x Computer-aided design. 
650 0 |a Mixing  |x Equipment and supplies. 
655 7 |a elektronické knihy  |7 fd186907  |2 czenas 
655 9 |a electronic books  |2 eczenas 
776 0 8 |i Print version:  |a Penney, W. Roy.  |t Computer-aided design of fluid mixing equipment.  |d Amsterdam : Elsevier, 2021  |z 0128189754  |z 9780128189757  |w (OCoLC)1126218377 
776 0 8 |i Print version:  |a Penney, W. Roy.  |t Computer-aided design of fluid mixing equipment  |z 9780128189757  |w (OCoLC)1255805624 
856 4 0 |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpCADFMEA4/computer-aided-design?kpromoter=marc  |y Full text