E-learning methodologies fundamentals, technologies and applications
This book covers state of the art topics including user modeling for e-learning systems and cloud, IOT, and mobile-based frameworks. It also considers security challenges and ethical conduct using Blockchain technology
Saved in:
Other Authors: | , , |
---|---|
Format: | eBook |
Language: | English |
Published: |
London
The Insitution of Engineering and Technology
2021
|
Series: | IET computing series ;
40 |
Subjects: | |
ISBN: | 1839531215 9781839531217 9781839531200 1839531207 |
Physical Description: | 1 online resource (xviii, 332 pages) illustrations |
LEADER | 05164cam a22004817c 4500 | ||
---|---|---|---|
001 | kn-on1247662388 | ||
003 | OCoLC | ||
005 | 20240717213016.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 210424s2021 enka ob 001 0 eng d | ||
040 | |a EBLCP |b eng |e rda |e pn |c EBLCP |d N$T |d STF |d OCLCO |d EBLCP |d UKAHL |d CUV |d OCLCF |d OCLCQ |d VLB |d OCLCQ |d YDX |d OCLCO |d OCLCL |d BRX | ||
020 | |a 1839531215 |q electronic bk. | ||
020 | |a 9781839531217 |q electronic bk. | ||
020 | |z 9781839531200 |q hardback | ||
020 | |z 1839531207 |q hardback | ||
035 | |a (OCoLC)1247662388 |z (OCoLC)1246352971 | ||
245 | 0 | 0 | |a E-learning methodologies |b fundamentals, technologies and applications |c edited by Mukta Goyal, Rajalakshmi Krishnamurthi and Divakar Yadav |
264 | 1 | |a London |b The Insitution of Engineering and Technology |c 2021 | |
300 | |a 1 online resource (xviii, 332 pages) |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a IET computing series |v 40 | |
504 | |a Includes bibliographical references and index | ||
505 | 0 | |a Cover -- Contents -- About the editors -- Preface -- Part I: Introduction and pedagogies of e-learning systems with intelligent techniques -- Part II: Technologies in e-learning -- Part III: Case studies -- Part I: Introduction and pedagogies of e-learning systems with intelligent techniques -- 1 Introduction -- 1.1 Asynchronous learning and synchronous learning -- 1.2 Blended learning, distance learning, and Classroom 2.0 -- 1.2.1 E-learning -- 1.2.2 Smart e-learning -- 1.3 Different frameworks of smart e-learning -- 1.3.1 AI in e-learning -- 1.3.2 Mobile learning | |
505 | 8 | |a 1.3.3 Cloud-based learning -- 1.3.4 Big data in e-learning -- 1.3.5 IoT framework of e-learning -- 1.3.6 Augmented reality in learning -- 1.4 Gaps in existing frameworks -- 1.5 Conclusion -- References -- 2 Goal-oriented adaptive e-learning -- 2.1 Introduction -- 2.2 Literature survey -- 2.2.1 State-of-the-art -- 2.3 Goal-oriented adaptive e-learning system -- 2.3.1 Goal-oriented course graph structure -- 2.3.1.1 CG components -- 2.3.1.2 Database -- 2.3.2 Registration module -- 2.3.3 Personalized assessment module -- 2.3.3.1 Dynamic learning ability -- 2.3.3.2 Dynamic learning success | |
505 | 8 | |a 2.3.4 ACO-based learning path generation -- 2.3.4.1 Objectives -- 2.3.4.2 Time constraint -- 2.3.4.3 Ant colony optimization -- 2.3.5 Persistence into database and self-learning -- 2.4 Experimental results -- 2.4.1 Data preparation -- 2.4.2 Evolution of learning path with regular improvement -- 2.4.2.1 Static learning path -- 2.4.2.2 Dynamic learning paths -- 2.4.3 Evolution of learning path with late improvement -- 2.4.3.1 Static learning path -- 2.4.3.2 Dynamic learning paths -- 2.5 Conclusion -- 2.6 Future scope -- References | |
505 | 8 | |a 3 Predicting students' behavioural engagement in microlearning using learning analytics model -- 3.1 Introduction -- 3.2 LA studies -- 3.3 Methods -- 3.4 Results -- 3.4.1 Analysis of using NN -- 3.4.2 Analysis using LR -- 3.5 Comparison analysis using NN and LR -- 3.6 Conclusion -- 3.7 Future scope -- References -- 4 Student performance prediction for adaptive e-learning systems -- 4.1 Introduction -- 4.2 Literature survey -- 4.2.1 Learner profile -- 4.2.2 Soft computing techniques -- 4.3 Methodology -- 4.3.1 Conversion of numeric to intuitionistic fuzzy value -- 4.3.2 Learning style model | |
505 | 8 | |a 4.3.3 Personality model -- 4.3.4 Assessment of knowledge level -- 4.3.5 Intuitionistic fuzzy optimization algorithm and KNN classifier -- 4.4 Experimental results -- 4.5 Future work -- 4.6 Conclusion -- References -- Part II: Technologies in e-learning -- 5 AI in e-learning -- 5.1 Artificial intelligence in India -- 5.2 Artificial intelligence in education -- 5.3 AI in e-learning -- 5.4 Analysis and data -- 5.5 Emphasis on the area that needs improvement in e-learning -- 5.6 Creating comprehensive curriculum -- 5.7 Immersive learning -- 5.8 Intelligent tutoring systems | |
500 | |a 5.9 Virtual facilitators and learning environment | ||
506 | |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty | ||
520 | |a This book covers state of the art topics including user modeling for e-learning systems and cloud, IOT, and mobile-based frameworks. It also considers security challenges and ethical conduct using Blockchain technology | ||
590 | |a Knovel |b Knovel (All titles) | ||
650 | 0 | |a Computer-assisted instruction |x Design. | |
655 | 7 | |a elektronické knihy |7 fd186907 |2 czenas | |
655 | 9 | |a electronic books |2 eczenas | |
700 | 1 | |a Goyal, Mukta |e editor | |
700 | 1 | |a Krishnamurthi, Rajalakshmi |e editor | |
700 | 1 | |a Yadav, Divakar |e editor | |
776 | 0 | 8 | |i Print version: |t E-learning methodologies. |d London : The Insitution of Engineering and Technology, 2021 |z 1839531207 |w (OCoLC)1240415300 |
830 | 0 | |a IET computing series ; |v 40 | |
856 | 4 | 0 | |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpELMFTA02/e-learning-methodologies?kpromoter=marc |y Full text |