E-learning methodologies fundamentals, technologies and applications

This book covers state of the art topics including user modeling for e-learning systems and cloud, IOT, and mobile-based frameworks. It also considers security challenges and ethical conduct using Blockchain technology

Saved in:
Bibliographic Details
Other Authors: Goyal, Mukta (Editor), Krishnamurthi, Rajalakshmi (Editor), Yadav, Divakar (Editor)
Format: eBook
Language: English
Published: London The Insitution of Engineering and Technology 2021
Series: IET computing series ; 40
Subjects:
ISBN: 1839531215
9781839531217
9781839531200
1839531207
Physical Description: 1 online resource (xviii, 332 pages) illustrations

Cover

Table of contents

LEADER 05164cam a22004817c 4500
001 kn-on1247662388
003 OCoLC
005 20240717213016.0
006 m o d
007 cr cn|||||||||
008 210424s2021 enka ob 001 0 eng d
040 |a EBLCP  |b eng  |e rda  |e pn  |c EBLCP  |d N$T  |d STF  |d OCLCO  |d EBLCP  |d UKAHL  |d CUV  |d OCLCF  |d OCLCQ  |d VLB  |d OCLCQ  |d YDX  |d OCLCO  |d OCLCL  |d BRX 
020 |a 1839531215  |q electronic bk. 
020 |a 9781839531217  |q electronic bk. 
020 |z 9781839531200  |q hardback 
020 |z 1839531207  |q hardback 
035 |a (OCoLC)1247662388  |z (OCoLC)1246352971 
245 0 0 |a E-learning methodologies  |b fundamentals, technologies and applications  |c edited by Mukta Goyal, Rajalakshmi Krishnamurthi and Divakar Yadav 
264 1 |a London  |b The Insitution of Engineering and Technology  |c 2021 
300 |a 1 online resource (xviii, 332 pages)  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a IET computing series  |v 40 
504 |a Includes bibliographical references and index 
505 0 |a Cover -- Contents -- About the editors -- Preface -- Part I: Introduction and pedagogies of e-learning systems with intelligent techniques -- Part II: Technologies in e-learning -- Part III: Case studies -- Part I: Introduction and pedagogies of e-learning systems with intelligent techniques -- 1 Introduction -- 1.1 Asynchronous learning and synchronous learning -- 1.2 Blended learning, distance learning, and Classroom 2.0 -- 1.2.1 E-learning -- 1.2.2 Smart e-learning -- 1.3 Different frameworks of smart e-learning -- 1.3.1 AI in e-learning -- 1.3.2 Mobile learning 
505 8 |a 1.3.3 Cloud-based learning -- 1.3.4 Big data in e-learning -- 1.3.5 IoT framework of e-learning -- 1.3.6 Augmented reality in learning -- 1.4 Gaps in existing frameworks -- 1.5 Conclusion -- References -- 2 Goal-oriented adaptive e-learning -- 2.1 Introduction -- 2.2 Literature survey -- 2.2.1 State-of-the-art -- 2.3 Goal-oriented adaptive e-learning system -- 2.3.1 Goal-oriented course graph structure -- 2.3.1.1 CG components -- 2.3.1.2 Database -- 2.3.2 Registration module -- 2.3.3 Personalized assessment module -- 2.3.3.1 Dynamic learning ability -- 2.3.3.2 Dynamic learning success 
505 8 |a 2.3.4 ACO-based learning path generation -- 2.3.4.1 Objectives -- 2.3.4.2 Time constraint -- 2.3.4.3 Ant colony optimization -- 2.3.5 Persistence into database and self-learning -- 2.4 Experimental results -- 2.4.1 Data preparation -- 2.4.2 Evolution of learning path with regular improvement -- 2.4.2.1 Static learning path -- 2.4.2.2 Dynamic learning paths -- 2.4.3 Evolution of learning path with late improvement -- 2.4.3.1 Static learning path -- 2.4.3.2 Dynamic learning paths -- 2.5 Conclusion -- 2.6 Future scope -- References 
505 8 |a 3 Predicting students' behavioural engagement in microlearning using learning analytics model -- 3.1 Introduction -- 3.2 LA studies -- 3.3 Methods -- 3.4 Results -- 3.4.1 Analysis of using NN -- 3.4.2 Analysis using LR -- 3.5 Comparison analysis using NN and LR -- 3.6 Conclusion -- 3.7 Future scope -- References -- 4 Student performance prediction for adaptive e-learning systems -- 4.1 Introduction -- 4.2 Literature survey -- 4.2.1 Learner profile -- 4.2.2 Soft computing techniques -- 4.3 Methodology -- 4.3.1 Conversion of numeric to intuitionistic fuzzy value -- 4.3.2 Learning style model 
505 8 |a 4.3.3 Personality model -- 4.3.4 Assessment of knowledge level -- 4.3.5 Intuitionistic fuzzy optimization algorithm and KNN classifier -- 4.4 Experimental results -- 4.5 Future work -- 4.6 Conclusion -- References -- Part II: Technologies in e-learning -- 5 AI in e-learning -- 5.1 Artificial intelligence in India -- 5.2 Artificial intelligence in education -- 5.3 AI in e-learning -- 5.4 Analysis and data -- 5.5 Emphasis on the area that needs improvement in e-learning -- 5.6 Creating comprehensive curriculum -- 5.7 Immersive learning -- 5.8 Intelligent tutoring systems 
500 |a 5.9 Virtual facilitators and learning environment 
506 |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty 
520 |a This book covers state of the art topics including user modeling for e-learning systems and cloud, IOT, and mobile-based frameworks. It also considers security challenges and ethical conduct using Blockchain technology 
590 |a Knovel  |b Knovel (All titles) 
650 0 |a Computer-assisted instruction  |x Design. 
655 7 |a elektronické knihy  |7 fd186907  |2 czenas 
655 9 |a electronic books  |2 eczenas 
700 1 |a Goyal, Mukta  |e editor 
700 1 |a Krishnamurthi, Rajalakshmi  |e editor 
700 1 |a Yadav, Divakar  |e editor 
776 0 8 |i Print version:  |t E-learning methodologies.  |d London : The Insitution of Engineering and Technology, 2021  |z 1839531207  |w (OCoLC)1240415300 
830 0 |a IET computing series ;  |v 40 
856 4 0 |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpELMFTA02/e-learning-methodologies?kpromoter=marc  |y Full text