Deep learning with Python : learn best practices of deep learning models with PyTorch

Master the practical aspects of implementing deep learning solutions with PyTorch, using a hands-on approach to understanding both theory and practice. This updated edition will prepare you for applying deep learning to real world problems with a sound theoretical foundation and practical know-how w...

Full description

Saved in:
Bibliographic Details
Main Authors: Ketkar, Nikhil, (Author), Moolayil, Jojo, (Author)
Format: eBook
Language: English
Published: [Berkeley, CA] : Apress, [2021]
Edition: Second edition.
Subjects:
ISBN: 9781484253649
1484253647
9781484253632
Physical Description: 1 online resource (xvii, 306 pages) : illustrations

Cover

Table of contents

LEADER 03905cam a2200409 i 4500
001 kn-on1246247219
003 OCoLC
005 20240717213016.0
006 m o d
007 cr cn|||||||||
008 210415s2021 caua ob 001 0 eng d
040 |a GW5XE  |b eng  |e rda  |e pn  |c GW5XE  |d OCLCO  |d EBLCP  |d OCLCF  |d UKAHL  |d AFU  |d OCLCO  |d OCLCQ  |d COM  |d OCLCQ  |d OCLCO  |d OCLCL 
020 |a 9781484253649  |q (electronic bk.) 
020 |a 1484253647  |q (electronic bk.) 
020 |z 9781484253632 
024 7 |a 10.1007/978-1-4842-5364-9  |2 doi 
035 |a (OCoLC)1246247219 
100 1 |a Ketkar, Nikhil,  |e author. 
245 1 0 |a Deep learning with Python :  |b learn best practices of deep learning models with PyTorch /  |c Nikhil Ketkar, Jojo Moolayil. 
250 |a Second edition. 
264 1 |a [Berkeley, CA] :  |b Apress,  |c [2021] 
300 |a 1 online resource (xvii, 306 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
506 |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty 
520 |a Master the practical aspects of implementing deep learning solutions with PyTorch, using a hands-on approach to understanding both theory and practice. This updated edition will prepare you for applying deep learning to real world problems with a sound theoretical foundation and practical know-how with PyTorch, a platform developed by Facebook's Artificial Intelligence Research Group. You'll start with a perspective on how and why deep learning with PyTorch has emerged as an path-breaking framework with a set of tools and techniques to solve real-world problems. Next, the book will ground you with the mathematical fundamentals of linear algebra, vector calculus, probability and optimization. Having established this foundation, you'll move on to key components and functionality of PyTorch including layers, loss functions and optimization algorithms. You'll also gain an understanding of Graphical Processing Unit (GPU) based computation, which is essential for training deep learning models. All the key architectures in deep learning are covered, including feedforward networks, convolution neural networks, recurrent neural networks, long short-term memory networks, autoencoders and generative adversarial networks. Backed by a number of tricks of the trade for training and optimizing deep learning models, this edition of Deep Learning with Python explains the best practices in taking these models to production with PyTorch. You will: Review machine learning fundamentals such as overfitting, underfitting, and regularization. Understand deep learning fundamentals such as feed-forward networks, convolution neural networks, recurrent neural networks, automatic differentiation, and stochastic gradient descent. Apply in-depth linear algebra with PyTorch Explore PyTorch fundamentals and its building blocks Work with tuning and optimizing models. 
505 0 |a Chapter 1 -- Introduction Deep Learning -- Chapter 2 -- Introduction to PyTorch -- Chapter 3- Feed Forward Networks -- Chapter 4 -- Automatic Differentiation in Deep Learning -- Chapter 5 -- Training Deep Neural Networks -- Chapter 6 -- Convolutional Neural Networks -- Chapter 7 -- Recurrent Neural Networks -- Chapter 8 -- Recent advances in Deep Learning. 
590 |a Knovel  |b Knovel (All titles) 
650 0 |a Machine learning. 
650 0 |a Python (Computer program language) 
650 0 |a Data mining. 
655 7 |a elektronické knihy  |7 fd186907  |2 czenas 
655 9 |a electronic books  |2 eczenas 
700 1 |a Moolayil, Jojo,  |e author. 
856 4 0 |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpDLPLBPD4/deep-learning-with?kpromoter=marc  |y Full text