Beginning Mathematica and Wolfram for data science : applications in data analysis, machine learning, and neural networks

Enhance your data science programming and analysis with the Wolfram programming language and Mathematica, an applied mathematical tools suite. The book will introduce you to the Wolfram programming language and its syntax, as well as the structure of Mathematica and its advantages and disadvantages....

Full description

Saved in:
Bibliographic Details
Main Author: Villalobos Alva, Jalil.
Format: eBook
Language: English
Published: Berkeley, CA : Apress, 2021.
Subjects:
ISBN: 9781484265949
1484265947
1484265939
9781484265932
Physical Description: 1 online resource (430 pages)

Cover

Table of contents

LEADER 03993cam a2200421 i 4500
001 kn-on1236267897
003 OCoLC
005 20240717213016.0
006 m o d
007 cr cn|||||||||
008 210206s2021 cau o 001 0 eng d
040 |a EBLCP  |b eng  |e rda  |e pn  |c EBLCP  |d YDX  |d TOH  |d GW5XE  |d YDXIT  |d OCLCO  |d N$T  |d OCLCF  |d UKAHL  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d LEATE  |d OCLCO  |d OCLCL  |d SXB 
020 |a 9781484265949  |q (electronic bk.) 
020 |a 1484265947  |q (electronic bk.) 
020 |z 1484265939 
020 |z 9781484265932 
024 7 |a 10.1007/978-1-4842-6594-9  |2 doi 
035 |a (OCoLC)1236267897  |z (OCoLC)1236035125  |z (OCoLC)1414117111 
100 1 |a Villalobos Alva, Jalil. 
245 1 0 |a Beginning Mathematica and Wolfram for data science :  |b applications in data analysis, machine learning, and neural networks /  |c Jalil Villalobos Alva. 
264 1 |a Berkeley, CA :  |b Apress,  |c 2021. 
300 |a 1 online resource (430 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty 
520 |a Enhance your data science programming and analysis with the Wolfram programming language and Mathematica, an applied mathematical tools suite. The book will introduce you to the Wolfram programming language and its syntax, as well as the structure of Mathematica and its advantages and disadvantages. You'll see how to use the Wolfram language for data science from a theoretical and practical perspective. Learning this language makes your data science code better because it is very intuitive and comes with pre-existing functions that can provide a welcoming experience for those who use other programming languages. You'll cover how to use Mathematica where data management and mathematical computations are needed. Along the way you'll appreciate how Mathematica provides a complete integrated platform: it has a mixed syntax as a result of its symbolic and numerical calculations allowing it to carry out various processes without superfluous lines of code. You'll learn to use its notebooks as a standard format, which also serves to create detailed reports of the processes carried out. What You Will Learn Use Mathematica to explore data and describe the concepts using Wolfram language commands Create datasets, work with data frames, and create tables Import, export, analyze, and visualize data Work with the Wolfram data repository Build reports on the analysis Use Mathematica for machine learning, with different algorithms, including linear, multiple, and logistic regression; decision trees; and data clustering Who This Book Is For Data scientists new to using Wolfram and Mathematica as a language/tool to program in. Programmers should have some prior programming experience, but can be new to the Wolfram language. 
505 0 |a 1. Introduction to Mathematica -- 2. Data Manipulation -- 3. Working with Data and Datasets -- 4. Import and Export -- 5. Data Visualization -- 6. Statistical Data Analysis -- 7. Data Exploration -- 8. Machine Learning with the Wolfram Language -- 9. Neural Networks with the Wolfram Language -- 10. Neural Network Framework. 
500 |a Includes index. 
590 |a Knovel  |b Knovel (All titles) 
650 0 |a Mathematica (Computer program language) 
650 0 |a Wolfram language (Computer program language) 
650 0 |a Mathematics  |x Data processing. 
650 0 |a Artificial intelligence. 
655 7 |a elektronické knihy  |7 fd186907  |2 czenas 
655 9 |a electronic books  |2 eczenas 
776 0 8 |i Print version:  |a Villalobos Alva, Jalil.  |t Beginning Mathematica and Wolfram for Data Science.  |d Berkeley, CA : Apress L.P., ©2021  |z 9781484265932 
856 4 0 |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpBMWDSAD1/beginning-mathematica-and?kpromoter=marc  |y Full text