Advanced sparsity-driven models and methods for radar applications
The book has 9 chapters. The following topics are dealt with: Introduction; Hybrid greedy pursuit algorithms for enhancing radar imaging quality; Two-level block sparsity model for multichannel radar signals; Parametric sparse representation for radar imaging with model uncertainty; Poisson disk sam...
Saved in:
Main Author: | |
---|---|
Format: | eBook |
Language: | English |
Published: |
London, United Kingdom :
SciTech Publishing,
2020.
|
Subjects: | |
ISBN: | 9781839530760 1839530766 9781839530753 1839530758 |
Physical Description: | 1 online resource (viii, 254 pages) : illustrations |
LEADER | 04832cam a2200505 i 4500 | ||
---|---|---|---|
001 | kn-on1230149959 | ||
003 | OCoLC | ||
005 | 20240717213016.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 201223t20202021enka fob 001 0 eng d | ||
040 | |a STF |b eng |e rda |c STF |d OCLCO |d OCLCF |d N$T |d OCLCO |d K6U |d OCLCQ |d UAB |d UKAHL |d CUV |d EBLCP |d CUS |d OCLCL |d UIU | ||
020 | |a 9781839530760 |q (PDF) | ||
020 | |a 1839530766 |q (PDF) | ||
020 | |z 9781839530753 |q (hardback) | ||
020 | |z 1839530758 | ||
024 | 7 | |a 10.1049/SBRA535E |2 doi | |
035 | |a (OCoLC)1230149959 |z (OCoLC)1227387070 |z (OCoLC)1228888484 | ||
100 | 1 | |a Li, Gang, |e author. | |
245 | 1 | 0 | |a Advanced sparsity-driven models and methods for radar applications / |c Gang Li. |
264 | 1 | |a London, United Kingdom : |b SciTech Publishing, |c 2020. | |
264 | 4 | |c ©2021 | |
300 | |a 1 online resource (viii, 254 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references and index. | ||
506 | |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty | ||
520 | |a The book has 9 chapters. The following topics are dealt with: Introduction; Hybrid greedy pursuit algorithms for enhancing radar imaging quality; Two-level block sparsity model for multichannel radar signals; Parametric sparse representation for radar imaging with model uncertainty; Poisson disk sampling for high-resolution and wide-swath SAR imaging; When advanced sparse signal models meet coarsely quantized radar data; Sparsity aware micro-Doppler analysis for radar target classification; Distributed detection of sparse signals in radar networks via locally most powerful test; and Summary and perspectives. | ||
505 | 0 | |a Intro -- Contents -- About the author -- Preface -- Acknowledgments -- Notation -- 1. Introduction -- 1.1 Sparsity of radar signals -- 1.2 Fundamentals of sparse signal recovery -- References -- 2. Hybrid greedy pursuit algorithms for enhancing radar imaging quality -- 2.1 Introduction -- 2.2 Radar imaging with multiple measurement vectors -- 2.3 Hybrid matching pursuit algorithm -- 2.4 Look-ahead hybrid matching pursuit algorithm -- 2.5 Conclusion -- References -- 3. Two-level block sparsity model for multichannel radar signals -- 3.1 Introduction | |
505 | 8 | |a 3.2 Formulation of the two-level block sparsity model -- 3.3 TWRI based on two-level block sparsity -- 3.4 STAP based on two-level block sparsity -- 3.5 Conclusion -- References -- 4. Parametric sparse representation for radar imaging with model uncertainty -- 4.1 Introduction -- 4.2 Parametric dictionary -- 4.3 Application to SAR refocusing of moving targets -- 4.4 Application to SAR motion compensation -- 4.5 Application to ISAR imaging of aircrafts -- 4.6 Conclusion -- References -- 5. Poisson disk sampling for high-resolution and wide-swath SAR imaging -- 5.1 Introduction | |
505 | 8 | |a 5.2 Tradeoff between high-resolution and wide-swath in SAR imaging -- 5.3 Poisson disk sampling scheme -- 5.4 SAR imaging algorithm with Poisson disk sampled data -- 5.5 Experimental results -- 5.6 Conclusion -- References -- 6. When advanced sparse signal models meet coarsely quantized radar data -- 6.1 Introduction -- 6.2 Parametric quantized iterative hard thresholding for SAR refocusing of moving targets with coarsely quantized data -- 6.3 Enhanced 1-bit radar imaging by exploiting two-level block sparsity -- 6.4 Conclusion -- References | |
505 | 8 | |a 7. Sparsity aware micro-Doppler analysis for radar target classification -- 7.1 Introduction -- 7.2 Micro-Doppler parameter estimation via PSR -- 7.3 Dynamic hand gesture recognition via Gabor-Hausdorff algorithm -- 7.4 Conclusion -- References -- 8. Distributed detection of sparse signals in radar networks via locally most powerful test -- 8.1 Introduction -- 8.2 The original LMPT detector -- 8.3 The quantized LMPT detector -- 8.4 Conclusion -- References -- 9. Summary and perspectives -- 9.1 Summary -- 9.2 Perspectives -- References -- Index | |
590 | |a Knovel |b Knovel (All titles) | ||
650 | 0 | |a Doppler radar. | |
650 | 0 | |a Imaging. | |
650 | 0 | |a Radar. | |
650 | 0 | |a Signal processing. | |
650 | 0 | |a Synthetic aperture radar. | |
650 | 0 | |a Target acquisition. | |
650 | 0 | |a Testing. | |
655 | 7 | |a elektronické knihy |7 fd186907 |2 czenas | |
655 | 9 | |a electronic books |2 eczenas | |
776 | 0 | 8 | |i Print version |a Li, Gang |t Advanced sparsity-driven models and methods for radar applications |d Edison : SciTech Publishing, 2021 |z 9781839530753 |w (OCoLC)1230929196 |
856 | 4 | 0 | |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpASDMMRA6/advanced-sparsity-driven?kpromoter=marc |y Full text |