Tethered Space Robot: Dynamics, Measurement, and Control

Saved in:
Bibliographic Details
Main Author Guo, Jian
Other Authors Huang, Panfeng, Zhang, Fan, Meng, Zhongjie
Format eBook
LanguageEnglish
Published Elsevier Science 2018.
Subjects
Online AccessFull text
ISBN9780128123096
0128123095
9780128123102
0128123109
Physical Description1 online resource

Cover

LEADER 00000cam a2200000M 4500
001 kn-on1229761866
003 OCoLC
005 20240717213016.0
006 m o d
007 cr cn|||||||||
008 200518s2018 xx o ||| 0 eng d
040 |a LVT  |b eng  |c LVT  |d SFB  |d OCLCO  |d OCLCF  |d YDX  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
020 0 |a 9780128123096 
020 |a 0128123095 
020 0 |a 9780128123102  |q (online) 
020 |a 0128123109 
035 |a (OCoLC)1229761866 
100 1 |a Guo, Jian. 
245 1 0 |a Tethered Space Robot: Dynamics, Measurement, and Control  |h [electronic book]. 
260 |b Elsevier Science  |c 2018. 
300 |a 1 online resource 
505 0 |a Front Cover -- Tethered Space Robot: Dynamics, Measurement, and Control -- Copyright -- Contents -- Chapter 1: Introduction -- 1.1. Background -- 1.1.1. Brief History of the Space Tentacles -- 1.1.2. Brief History of the Space Manipulator -- 1.1.3. Brief History of the Space Tether -- 1.1.3.1. Single Space Tether -- Artificial Gravity -- Orbital Transfer -- Attitude Stabilization -- 1.1.3.2. Multi-Space Tethers -- Dynamics and Control -- Attitude Control -- Structure and Configuration -- 1.1.4. Brief History of the TSR -- 1.1.4.1. Releasing/Retrieving Phase -- 1.1.4.2. Capture and Post-Capture Phase -- 1.1.4.3. Deorbiting Phase -- 1.2. System and Mission Design of TSR -- 1.2.1. System Architecture -- 1.2.2. Mission Scenarios -- References -- Further Reading -- Chapter 2: Dynamics Modeling of the Space Tether -- 2.1. Dynamics Modeling and Solving Based on the Bead Model -- 2.2. Dynamics Modeling and solving Based on Ritz method -- 2.3. Dynamics Modeling and Solving Based on Hybrid Unit Method -- 2.4. Dynamics Modeling and Solving Based on Newton-Euler Method -- 2.5. Dynamics Modeling and Solving Based on Hamiltonian -- References -- Further Reading -- Chapter : Pose Measurement Based on Vision Perception -- 3.1. Measurement System Scheme -- 3.2. Target Contour Tracking -- 3.2.1. Related Works -- 3.2.2. Feature Extraction -- 3.2.2.1. Simulation Comparisons -- 3.2.2.2. Description of SURF -- 3.2.2.3. Improved SURF -- 3.2.3. Feature Matching Algorithm -- 3.2.3.1. Improved P-KLT Algorithm -- 3.2.3.2. Rejecting the Outliers -- 3.2.4. Precise Location and Adaptive Strategy -- 3.2.4.1. Precise Location of Object -- Discrete Point Filter -- Adaptive Features Updating Strategy -- 3.2.5. Results, Limitations and Future Works -- 3.2.5.1. Experiments Condition -- 3.2.5.2. Results -- Quantitative Comparisons -- Qualitative Analysis -- 3.3. Detection of ROI. 
505 8 |a 3.3.1. Arc Support Region -- 3.3.2. Estimation of Circle Parameters -- 3.4. Visual Servoing and Pose Measurement -- 3.4.1. Theory of Calculating Azimuth Angles -- 3.4.2. Improved Template Matching -- 3.4.3. Least Square Integrated Predictor -- 3.4.4. Updating Strategy of Dynamic Template -- 3.4.5. Visual Servoing Controller -- 3.4.6. Experimental Validation -- 3.4.6.1. Experimental Set-up -- 3.4.6.2. Design of Experiments -- 3.4.6.3. Results and Discussions -- Qualitative Analysis -- Quantitative Comparisons -- References -- Chapter 4: Optimal Trajectory Tracking in Approaching -- 4.1. Trajectory Modeling in Approaching -- 4.2. Coordinated Control Method -- 4.2.1. Optimization and Distribution of the Orbit Control Force -- 4.2.2. Tether Reeling Model and Tethers Tension Force Controller -- 4.2.3. Fuzzy PD Controller for Tracking Optimal Trajectory -- 4.3. Attitude Stability Strategy -- 4.3.1. Design of the Attitude Controller -- 4.3.2. Stability Proof of the Attitude Controller -- 4.4. Numerical Simulation -- References -- Chapter 5: Approaching Control Based on a Distributed Tether Model -- 5.1. Dynamics Modeling of TSR -- 5.1.1. Dynamics Modeling Based on the Hamiltonian Theory -- 5.1.2. Mathematical Discretization -- 5.2. Optimal Coordinated Controller -- 5.2.1. Minimum-Fuel Problem -- 5.2.2. Hp-Adaptive Pseudospectral Method -- 5.2.3. Closed-Loop Controller -- 5.3. Numerical Simulation -- References -- Chapter 6: Approaching Control Based on a Movable Platform -- 6.1. Approach Dynamic Model -- 6.1.1. The Attitude Model -- 6.1.2. The Trajectory Model -- 6.2. Approach Control Strategy -- 6.2.1. Open-Loop Trajectory Optimization -- 6.2.2. Feedback Trajectory Control -- 6.2.3. Feedback Attitude Control -- 6.3. Numerical Simulation -- References -- Chapter 7: Approaching Control Based on a Tether Releasing Mechanism -- 7.1. Coupling Dynamic Models. 
505 8 |a 7.1.1. Releasing Dynamic Model -- 7.1.2. Attitude Dynamic Model -- 7.1.3. Model of Tether Releasing Mechanism -- 7.1.4. Entire Coupled Dynamics Model -- 7.2. Coordinated Coupling Control Strategy -- 7.2.1. The Optimal Trajectory Planning -- 7.2.2. Coupled Coordinated Control Method -- 7.2.2.1. Thrusters Layout of Operation Robot -- 7.2.2.2. Coupled Coordinated Controller Design -- 7.3. Numerical Simulation -- References -- Chapter 8: Approaching Control Based on Mobile Tether Attachment Points -- 8.1. Orbit and Attitude Dynamic Model -- 8.1.1. Design of the Mechanism -- 8.1.2. Attitude Dynamics Model -- 8.1.3. Orbit Dynamic Model -- 8.1.4. Task Description of Attitude Control -- 8.2. Strategy Design of the Coordinated Controller -- 8.2.1. Attitude Coordinated Controller Design -- 8.2.1. Coordinated Tracking Controller Design -- 8.3. Numerical Simulation -- 8.3.1. Trajectory Planning with Constant Tether Tension -- 8.3.2. Simulation Results of the Coordinated Control -- References -- Chapter 9: Impact Dynamic Modeling and Adaptive Target Capture Control -- 9.1. Dynamic Modeling of Tethered Space Robots for Target Capture -- 9.1.1. Dynamic Modeling of the TSR -- 9.1.2. Dynamic Modeling of the Target -- 9.1.3. Impact Dynamic Models for the TSR Capturing a Target -- 9.2. Stabilization Controller Design for Target Capture by TSR -- 9.2.1. Impedance Control -- 9.2.2. Adaptive Robust Target Capture Control -- 9.3. Numerical Simulation -- References -- Chapter 10: Postcapture Attitude Control for a TSR-Target Combination System -- 10.1. Dynamics Model -- 10.1.1. Attitude Dynamics Model -- 10.1.2. Orbit Dynamic Model -- 10.1.3. Dynamic Analysis -- 10.2. Coordinated Control Strategies -- 10.2.1. Parameter Identification -- 10.2.2. Coordinated Controller of Tether and Thrusters -- 10.2.3. Thruster Controller Design. 
505 8 |a 10.2.4. Switching Conditions and Parameter Optimization -- 10.3. Numerical Simulation -- References -- Conclusions -- Index -- Back Cover. 
506 |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty 
590 |a Knovel  |b Knovel (All titles) 
650 0 |a Space robotics. 
655 7 |a elektronické knihy  |7 fd186907  |2 czenas 
655 9 |a electronic books  |2 eczenas 
700 1 |a Huang, Panfeng. 
700 1 |a Zhang, Fan. 
700 1 |a Meng, Zhongjie. 
856 4 0 |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpTSRDMC01/tethered-space-robot?kpromoter=marc  |y Full text