Tethered Space Robot: Dynamics, Measurement, and Control
Saved in:
| Main Author | |
|---|---|
| Other Authors | , , |
| Format | eBook |
| Language | English |
| Published |
Elsevier Science
2018.
|
| Subjects | |
| Online Access | Full text |
| ISBN | 9780128123096 0128123095 9780128123102 0128123109 |
| Physical Description | 1 online resource |
Cover
| LEADER | 00000cam a2200000M 4500 | ||
|---|---|---|---|
| 001 | kn-on1229761866 | ||
| 003 | OCoLC | ||
| 005 | 20240717213016.0 | ||
| 006 | m o d | ||
| 007 | cr cn||||||||| | ||
| 008 | 200518s2018 xx o ||| 0 eng d | ||
| 040 | |a LVT |b eng |c LVT |d SFB |d OCLCO |d OCLCF |d YDX |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
| 020 | 0 | |a 9780128123096 | |
| 020 | |a 0128123095 | ||
| 020 | 0 | |a 9780128123102 |q (online) | |
| 020 | |a 0128123109 | ||
| 035 | |a (OCoLC)1229761866 | ||
| 100 | 1 | |a Guo, Jian. | |
| 245 | 1 | 0 | |a Tethered Space Robot: Dynamics, Measurement, and Control |h [electronic book]. |
| 260 | |b Elsevier Science |c 2018. | ||
| 300 | |a 1 online resource | ||
| 505 | 0 | |a Front Cover -- Tethered Space Robot: Dynamics, Measurement, and Control -- Copyright -- Contents -- Chapter 1: Introduction -- 1.1. Background -- 1.1.1. Brief History of the Space Tentacles -- 1.1.2. Brief History of the Space Manipulator -- 1.1.3. Brief History of the Space Tether -- 1.1.3.1. Single Space Tether -- Artificial Gravity -- Orbital Transfer -- Attitude Stabilization -- 1.1.3.2. Multi-Space Tethers -- Dynamics and Control -- Attitude Control -- Structure and Configuration -- 1.1.4. Brief History of the TSR -- 1.1.4.1. Releasing/Retrieving Phase -- 1.1.4.2. Capture and Post-Capture Phase -- 1.1.4.3. Deorbiting Phase -- 1.2. System and Mission Design of TSR -- 1.2.1. System Architecture -- 1.2.2. Mission Scenarios -- References -- Further Reading -- Chapter 2: Dynamics Modeling of the Space Tether -- 2.1. Dynamics Modeling and Solving Based on the Bead Model -- 2.2. Dynamics Modeling and solving Based on Ritz method -- 2.3. Dynamics Modeling and Solving Based on Hybrid Unit Method -- 2.4. Dynamics Modeling and Solving Based on Newton-Euler Method -- 2.5. Dynamics Modeling and Solving Based on Hamiltonian -- References -- Further Reading -- Chapter : Pose Measurement Based on Vision Perception -- 3.1. Measurement System Scheme -- 3.2. Target Contour Tracking -- 3.2.1. Related Works -- 3.2.2. Feature Extraction -- 3.2.2.1. Simulation Comparisons -- 3.2.2.2. Description of SURF -- 3.2.2.3. Improved SURF -- 3.2.3. Feature Matching Algorithm -- 3.2.3.1. Improved P-KLT Algorithm -- 3.2.3.2. Rejecting the Outliers -- 3.2.4. Precise Location and Adaptive Strategy -- 3.2.4.1. Precise Location of Object -- Discrete Point Filter -- Adaptive Features Updating Strategy -- 3.2.5. Results, Limitations and Future Works -- 3.2.5.1. Experiments Condition -- 3.2.5.2. Results -- Quantitative Comparisons -- Qualitative Analysis -- 3.3. Detection of ROI. | |
| 505 | 8 | |a 3.3.1. Arc Support Region -- 3.3.2. Estimation of Circle Parameters -- 3.4. Visual Servoing and Pose Measurement -- 3.4.1. Theory of Calculating Azimuth Angles -- 3.4.2. Improved Template Matching -- 3.4.3. Least Square Integrated Predictor -- 3.4.4. Updating Strategy of Dynamic Template -- 3.4.5. Visual Servoing Controller -- 3.4.6. Experimental Validation -- 3.4.6.1. Experimental Set-up -- 3.4.6.2. Design of Experiments -- 3.4.6.3. Results and Discussions -- Qualitative Analysis -- Quantitative Comparisons -- References -- Chapter 4: Optimal Trajectory Tracking in Approaching -- 4.1. Trajectory Modeling in Approaching -- 4.2. Coordinated Control Method -- 4.2.1. Optimization and Distribution of the Orbit Control Force -- 4.2.2. Tether Reeling Model and Tethers Tension Force Controller -- 4.2.3. Fuzzy PD Controller for Tracking Optimal Trajectory -- 4.3. Attitude Stability Strategy -- 4.3.1. Design of the Attitude Controller -- 4.3.2. Stability Proof of the Attitude Controller -- 4.4. Numerical Simulation -- References -- Chapter 5: Approaching Control Based on a Distributed Tether Model -- 5.1. Dynamics Modeling of TSR -- 5.1.1. Dynamics Modeling Based on the Hamiltonian Theory -- 5.1.2. Mathematical Discretization -- 5.2. Optimal Coordinated Controller -- 5.2.1. Minimum-Fuel Problem -- 5.2.2. Hp-Adaptive Pseudospectral Method -- 5.2.3. Closed-Loop Controller -- 5.3. Numerical Simulation -- References -- Chapter 6: Approaching Control Based on a Movable Platform -- 6.1. Approach Dynamic Model -- 6.1.1. The Attitude Model -- 6.1.2. The Trajectory Model -- 6.2. Approach Control Strategy -- 6.2.1. Open-Loop Trajectory Optimization -- 6.2.2. Feedback Trajectory Control -- 6.2.3. Feedback Attitude Control -- 6.3. Numerical Simulation -- References -- Chapter 7: Approaching Control Based on a Tether Releasing Mechanism -- 7.1. Coupling Dynamic Models. | |
| 505 | 8 | |a 7.1.1. Releasing Dynamic Model -- 7.1.2. Attitude Dynamic Model -- 7.1.3. Model of Tether Releasing Mechanism -- 7.1.4. Entire Coupled Dynamics Model -- 7.2. Coordinated Coupling Control Strategy -- 7.2.1. The Optimal Trajectory Planning -- 7.2.2. Coupled Coordinated Control Method -- 7.2.2.1. Thrusters Layout of Operation Robot -- 7.2.2.2. Coupled Coordinated Controller Design -- 7.3. Numerical Simulation -- References -- Chapter 8: Approaching Control Based on Mobile Tether Attachment Points -- 8.1. Orbit and Attitude Dynamic Model -- 8.1.1. Design of the Mechanism -- 8.1.2. Attitude Dynamics Model -- 8.1.3. Orbit Dynamic Model -- 8.1.4. Task Description of Attitude Control -- 8.2. Strategy Design of the Coordinated Controller -- 8.2.1. Attitude Coordinated Controller Design -- 8.2.1. Coordinated Tracking Controller Design -- 8.3. Numerical Simulation -- 8.3.1. Trajectory Planning with Constant Tether Tension -- 8.3.2. Simulation Results of the Coordinated Control -- References -- Chapter 9: Impact Dynamic Modeling and Adaptive Target Capture Control -- 9.1. Dynamic Modeling of Tethered Space Robots for Target Capture -- 9.1.1. Dynamic Modeling of the TSR -- 9.1.2. Dynamic Modeling of the Target -- 9.1.3. Impact Dynamic Models for the TSR Capturing a Target -- 9.2. Stabilization Controller Design for Target Capture by TSR -- 9.2.1. Impedance Control -- 9.2.2. Adaptive Robust Target Capture Control -- 9.3. Numerical Simulation -- References -- Chapter 10: Postcapture Attitude Control for a TSR-Target Combination System -- 10.1. Dynamics Model -- 10.1.1. Attitude Dynamics Model -- 10.1.2. Orbit Dynamic Model -- 10.1.3. Dynamic Analysis -- 10.2. Coordinated Control Strategies -- 10.2.1. Parameter Identification -- 10.2.2. Coordinated Controller of Tether and Thrusters -- 10.2.3. Thruster Controller Design. | |
| 505 | 8 | |a 10.2.4. Switching Conditions and Parameter Optimization -- 10.3. Numerical Simulation -- References -- Conclusions -- Index -- Back Cover. | |
| 506 | |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty | ||
| 590 | |a Knovel |b Knovel (All titles) | ||
| 650 | 0 | |a Space robotics. | |
| 655 | 7 | |a elektronické knihy |7 fd186907 |2 czenas | |
| 655 | 9 | |a electronic books |2 eczenas | |
| 700 | 1 | |a Huang, Panfeng. | |
| 700 | 1 | |a Zhang, Fan. | |
| 700 | 1 | |a Meng, Zhongjie. | |
| 856 | 4 | 0 | |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpTSRDMC01/tethered-space-robot?kpromoter=marc |y Full text |