Analyzing and troubleshooting single-screw extruders

Prior extrusion books are based on barrel rotation physics. This is the first book that focuses on the actual physics of the process - screw rotation physics. In the first nine chapters, theories and math models are developed. Then, these models are used to solve actual commercial problems in the re...

Full description

Saved in:
Bibliographic Details
Main Authors: Campbell, G. A. Professor, (Author), Spalding, Mark A., (Author)
Format: eBook
Language: English
Published: Munich, Germany ; Cincinnati, Ohio : Hanser Publishers, [2021]
Edition: 2nd edition.
Subjects:
ISBN: 9781569907856
1569907854
9781569907849
Physical Description: 1 online resource : illustrations

Cover

Table of contents

LEADER 11388cam a2200433 i 4500
001 kn-on1227106569
003 OCoLC
005 20240717213016.0
006 m o d
007 cr cn|||||||||
008 201217s2021 gw a ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d OCLCO  |d OCLCF  |d SOE  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL  |d DXU 
020 |a 9781569907856  |q (electronic bk.) 
020 |a 1569907854  |q (electronic bk.) 
020 |z 9781569907849 
035 |a (OCoLC)1227106569 
100 1 |a Campbell, G. A.  |q (Gregory A.)  |c Professor,  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PCjxdbQGYr6ttTcBwCjgdwC 
245 1 0 |a Analyzing and troubleshooting single-screw extruders /  |c Gregory A. Campbell, Mark A. Spalding. 
250 |a 2nd edition. 
264 1 |a Munich, Germany ;  |a Cincinnati, Ohio :  |b Hanser Publishers,  |c [2021] 
300 |a 1 online resource :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and indexes. 
505 0 |a Intro -- Contents -- Preface -- Acknowledgements -- 1 Single-Screw Extrusion: Introduction and Troubleshooting -- 1.1 Organization of this Book -- 1.2 Troubleshooting Extrusion Processes -- 1.2.1 The Injection Molding Problem at Saturn -- 1.3 Introduction to Screw Geometry -- 1.3.1 Screw Geometric Quantitative Characteristics -- 1.4 Simple Flow Equations for the Metering Section -- 1.5 Example Calculations -- 1.5.1 Example 1: Calculation of Rotational and Pressure Flow Components -- 1.5.2 Example 2: Flow Calculations for a Properly Operating Extruder -- 1.5.3 Example 3: Flow Calculations for an Improperly Operating Extruder -- 1.5.4 Metering Channel Calculation Summary -- Nomenclature -- References -- 2 Polymer Materials -- 2.1 Introduction and History -- 2.1.1 History of Natural Polymers -- 2.1.2 The History of Synthetic Polymers -- 2.2 Characteristics of Synthetic Polymers -- 2.3 Structure Effects on Properties -- 2.3.1 Stereochemistry -- 2.3.2 Melting and Glass Transition Temperatures -- 2.3.3 Crystallinity -- 2.4 Polymer Production and Reaction Engineering -- 2.4.1 Condensation Reactions -- 2.4.2 Addition Reactions -- 2.5 Polymer Degradation -- 2.5.1 Ceiling Temperature -- 2.5.2 Degradation of Vinyl Polymers -- 2.5.3 Degradation of Condensation Polymers -- References -- 3 Introduction to Polymer Rheology for Extrusion -- 3.1 Introduction to the Deformation of Materials -- 3.2 Introduction to Basic Concepts of Molecular Size -- 3.2.1 Size Distribution Example -- 3.2.2 Molecular Weight Distributions for Polymers -- 3.3 Basic Rheology Concepts -- 3.4 Polymer Solution Viscosity and Polymer Molecular Weight -- 3.4.1 Sample Calculation of Solution Viscosity -- 3.5 Introduction to Viscoelasticity -- 3.6 Measurement of Polymer Viscosity -- 3.6.1 Capillary Rheometers -- 3.6.2 Cone and Plate Rheometers -- 3.6.3 Melt Index and Melt Flow Rate. 
505 8 |a 3.7 Viscosity of Polymers as Functions of Molecular Character, Temperature, and Pressure -- 3.8 Historical Models for Non-Newtonian Flow -- 3.9 Power Law and Viscosity Shear Rate Dependence -- 3.9.1 Shear Stress from Newtonian to Infinite Shear -- 3.9.2 Viscosity as a Function of Shear Rate -- 3.9.3 The Power Law and Process Dissipation -- 3.9.4 Viscosity, Shear Rate, and Dissipation -- 3.9.5 Percolation in Structured Systems -- 3.9.6 Tube Flow Data and Data Analysis -- 3.9.7 Dispersion Based Power Law Constant n -- 3.9.8 Rheological Implictions for Extrusion and Molding Processes -- Nomenclature -- References -- 4 Resin Physical Properties Related to Processing -- 4.1 Bulk Density and Compaction -- 4.1.1 Measurement of Bulk Density -- 4.1.2 Measuring the Compaction Characteristics of a Resin -- 4.2 Lateral Stress Ratio -- 4.2.1 Measuring the Lateral Stress Ratio -- 4.3 Stress at a Sliding Interface -- 4.3.1 The Screw Simulator and the Measurement of the Stress at the Interface -- 4.4 Melting Flux -- 4.5 Heat Capacity -- 4.6 Thermal Conductivity and Heat Transfer -- 4.7 Melt Density -- Nomenclature -- References -- 5 Solids Conveying -- 5.1 Description of the Solids Conveying Process -- 5.2 Literature Review of Smooth-Bore Solids Conveying Models -- 5.2.1 Darnell and Mol Model -- 5.2.2 Tadmor and Klein Model -- 5.2.3 Clarkson University Models -- 5.2.4 Hyun and Spalding Model -- 5.2.5 Moysey and Thompson Model -- 5.3 Modern Experimental Solids Conveying Devices -- 5.3.1 Solids Conveying Devices at Clarkson University -- 5.3.2 The Solids Conveying Device at Dow -- 5.4 Comparison of the Modified Campbell-Dontula Model with Experimental Data -- 5.4.1 Solids Conveying Example Calculation -- 5.5 Grooved Bore Solids Conveying -- 5.5.1 Grooved Barrel Solids Conveying Models -- 5.6 Solids Conveying Notes -- Nomenclature -- References -- 6 The Melting Process. 
505 8 |a 6.1 Compression Ratio and Compression Rate -- 6.2 The Melting Process -- 6.2.1 The Melting Process as a Function of Screw Geometry -- 6.2.2 Review of the Classical Literature -- 6.2.3 Reevaluation of the Tadmor and Klein Melting Data -- 6.3 Theory Development for Melting Using Screw Rotation Physics -- 6.3.1 Melting Model for a Conventional Transition Section Using Screw Rotation Physics -- 6.3.2 Melting Models for Barrier Screw Sections -- 6.4 Effect of Pressure on Melting Rate -- 6.5 One-Dimensional Melting -- 6.5.1 One-Dimensional Melting Model -- 6.6 Solid Bed Breakup -- 6.7 Melting Section Characteristics -- Nomenclature -- References -- 7 Fluid Flow in Metering Channels -- 7.1 Introduction to the Reference Frame -- 7.2 Laboratory Observations -- 7.3 Literature Survey -- 7.4 Development of Linearized Flow Analysis -- 7.4.1 Example Flow Calculation -- 7.5 Numerical Flow Evaluation -- 7.5.1 Simulation of a 500 mm Diameter Melt-Fed Extruder -- 7.5.2 Extrusion Variables and Errors -- 7.5.3 Corrections to Rotational Flow -- 7.5.4 Simulation of the 500 mm Diameter Extruder Using Fc -- 7.6 Frame Dependent Variables -- 7.6.1 Example Calculation of Energy Dissipation -- 7.7 Viscous Energy Dissipation and Temperature of the Resin in the Channel -- 7.7.1 Energy Dissipation and Channel Temperature for Screw Rotation -- 7.7.2 Energy Dissipation and Channel Temperature for Barrel Rotation -- 7.7.3 Temperature Increase Calculation Example for a Screw Pump -- 7.7.4 Heat Transfer Coefficients -- 7.7.5 Temperature Calculation Using a Control Volume Technique -- 7.7.6 Numerical Comparison of Temperatures for Screw and Barrel Rotations -- 7.8 Metering Section Characteristics -- Nomenclature -- References -- 8 Mixing Processes for Single-Screw Extruders -- 8.1 Common Mixing Operations for Single-Screw Extruders -- 8.1.1 Common Mixing Applications. 
505 8 |a 8.2 Dispersive and Distributive Mixing Processes -- 8.3 Fundamentals of Mixing -- 8.3.1 Measures of Mixing -- 8.3.2 Experimental Demonstration of Mixing -- 8.4 The Melting Process as the Primary Mechanism for Mixing -- 8.4.1 Experimental Analysis of the Melting and Mixing Capacity of a Screw -- 8.4.2 Mixing and Barrier-Flighted Melting Sections -- 8.5 Secondary Mixing Processes and Devices -- 8.5.1 Maddock-Style Mixers -- 8.5.2 Blister Ring Mixers -- 8.5.3 Spiral Dam Mixers -- 8.5.4 Pin-Type Mixers -- 8.5.5 Knob Mixers -- 8.5.6 Gear Mixers -- 8.5.7 Dynamic Mixers -- 8.5.8 Static Mixers -- 8.6 Mixing Using Natural Resins and Masterbatches -- 8.7 Mixing and Melting Performance as a Function of Flight Clearance -- 8.8 High Pressures During Melting and Agglomerates -- 8.9 Effect of Discharge Pressure on Mixing -- 8.10 Shear Refinement -- 8.11 Direct Compounding Using Single-Screw Extruders -- Nomenclature -- References -- 9 Scaling of Single-Screw Extrusion Processes -- 9.1 Scaling Rules -- 9.2 Engineering Design Method for Plasticating Screws -- 9.2.1 Process Analysis and Simulations -- 9.3 Scale-Up from a 40 mm Diameter Extruder to an 80 mm Diameter Machine for a PE Resin -- 9.4 Rate Increase for an 88.9 mm Diameter Extruder Running a HIPS Resin -- Nomenclature -- References -- 10 Introduction to Troubleshooting the Extrusion Process -- 10.1 The Troubleshooting Process -- 10.2 Hypothesis Setting and Problem Solving -- 10.2.1 Case Study for the Design of a New Resin -- 10.2.2 Case Study for a Surface Blemish -- 10.2.3 Case Study for a Profile Extrusion Process -- 10.3 Equipment and Tools Needed for Troubleshooting -- 10.3.1 Maddock Solidification Experiment -- 10.4 Common Mechanical Problems -- 10.4.1 Flight Clearance and Hard Facing -- 10.4.2 Barrel and Screw Alignment -- 10.4.3 Extruder Barrel Supports -- 10.4.4 First-Time Installation of a Screw. 
505 8 |a 10.4.5 Screw Breaks -- 10.4.6 Protection from High-Pressure Events -- 10.4.7 Gearbox Lubricating Oil -- 10.4.8 Particle Seals and Viscoseals -- 10.4.9 Screw Cleaning -- 10.5 Common Electrical and Sensor Problems -- 10.5.1 Thermocouples -- 10.5.2 Pressure Sensors -- 10.5.3 Electronic Filters and Noise -- 10.6 Motors and Drive Systems -- 10.6.1 Motor Efficiencies and Power Factors -- 10.7 Typical Screw Channel Dimensions -- 10.8 Common Calculations -- 10.8.1 Energy Dissipated by the Screw -- 10.8.2 Screw Geometry Indices -- 10.9 Barrel Temperature Optimization -- 10.10 Screw Temperature Profile -- 10.11 The Screw Manufacturing and Refurbishing Process -- 10.12 Injection-Molding Plasticators -- 10.12.1 Calculations for Injection-Molding Plasticators -- 10.13 New Equipment Installations -- 10.13.1 Case Study: A Large Diameter Extruder Purchase -- 10.13.2 Case Study: Extruder and Line Purchase for a New Product -- 10.13.3 A High-Density Foamed Sheet Product -- 10.13.4 Summary for New Equipment Installations -- Nomenclature -- References -- 11 Contamination in the Finished Product -- 11.1 Foreign Contaminants in the Extrudate -- 11.1.1 Melt Filtration -- 11.1.2 Metal Fragments in the Extrudate -- 11.1.3 Gas Bubbles in a New Sheet Line -- 11.2 Gels in Polyolefin Resins -- 11.2.1 Protocols for Gel Analysis -- 11.3 Resin Decomposition in Stagnant Regions of a Process -- 11.3.1 Transfer Lines -- 11.4 Improper Shutdown of Processing Equipment -- 11.5 Equipment Purging -- 11.6 Oxygen Exclusion at the Hopper -- 11.7 Flight Radii Size -- 11.8 Drying the Resin -- 11.9 Color Masterbatches -- 11.10 Case Studies for Extrusion Processes with Contamination in the Product -- 11.10.1 Intermittent Crosslinked Gels in a Film Product -- 11.10.2 Small Gels in an LLDPE Film Product -- 11.10.3 Degassing Holes in Blow-Molded Bottles. 
506 |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty 
520 |a Prior extrusion books are based on barrel rotation physics. This is the first book that focuses on the actual physics of the process - screw rotation physics. In the first nine chapters, theories and math models are developed. Then, these models are used to solve actual commercial problems in the remainder of the book. 
590 |a Knovel  |b Knovel (All titles) 
650 0 |a Plastics  |x Extrusion. 
650 0 |a Screw pumps. 
655 7 |a elektronické knihy  |7 fd186907  |2 czenas 
655 9 |a electronic books  |2 eczenas 
700 1 |a Spalding, Mark A.,  |e author. 
856 4 0 |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpATSSEE03/analyzing-and-troubleshooting?kpromoter=marc  |y Full text