Analyzing and troubleshooting single-screw extruders
Prior extrusion books are based on barrel rotation physics. This is the first book that focuses on the actual physics of the process - screw rotation physics. In the first nine chapters, theories and math models are developed. Then, these models are used to solve actual commercial problems in the re...
Saved in:
Main Authors: | , |
---|---|
Format: | eBook |
Language: | English |
Published: |
Munich, Germany ; Cincinnati, Ohio :
Hanser Publishers,
[2021]
|
Edition: | 2nd edition. |
Subjects: | |
ISBN: | 9781569907856 1569907854 9781569907849 |
Physical Description: | 1 online resource : illustrations |
LEADER | 11388cam a2200433 i 4500 | ||
---|---|---|---|
001 | kn-on1227106569 | ||
003 | OCoLC | ||
005 | 20240717213016.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 201217s2021 gw a ob 001 0 eng d | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d N$T |d OCLCO |d OCLCF |d SOE |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d DXU | ||
020 | |a 9781569907856 |q (electronic bk.) | ||
020 | |a 1569907854 |q (electronic bk.) | ||
020 | |z 9781569907849 | ||
035 | |a (OCoLC)1227106569 | ||
100 | 1 | |a Campbell, G. A. |q (Gregory A.) |c Professor, |e author. |1 https://id.oclc.org/worldcat/entity/E39PCjxdbQGYr6ttTcBwCjgdwC | |
245 | 1 | 0 | |a Analyzing and troubleshooting single-screw extruders / |c Gregory A. Campbell, Mark A. Spalding. |
250 | |a 2nd edition. | ||
264 | 1 | |a Munich, Germany ; |a Cincinnati, Ohio : |b Hanser Publishers, |c [2021] | |
300 | |a 1 online resource : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references and indexes. | ||
505 | 0 | |a Intro -- Contents -- Preface -- Acknowledgements -- 1 Single-Screw Extrusion: Introduction and Troubleshooting -- 1.1 Organization of this Book -- 1.2 Troubleshooting Extrusion Processes -- 1.2.1 The Injection Molding Problem at Saturn -- 1.3 Introduction to Screw Geometry -- 1.3.1 Screw Geometric Quantitative Characteristics -- 1.4 Simple Flow Equations for the Metering Section -- 1.5 Example Calculations -- 1.5.1 Example 1: Calculation of Rotational and Pressure Flow Components -- 1.5.2 Example 2: Flow Calculations for a Properly Operating Extruder -- 1.5.3 Example 3: Flow Calculations for an Improperly Operating Extruder -- 1.5.4 Metering Channel Calculation Summary -- Nomenclature -- References -- 2 Polymer Materials -- 2.1 Introduction and History -- 2.1.1 History of Natural Polymers -- 2.1.2 The History of Synthetic Polymers -- 2.2 Characteristics of Synthetic Polymers -- 2.3 Structure Effects on Properties -- 2.3.1 Stereochemistry -- 2.3.2 Melting and Glass Transition Temperatures -- 2.3.3 Crystallinity -- 2.4 Polymer Production and Reaction Engineering -- 2.4.1 Condensation Reactions -- 2.4.2 Addition Reactions -- 2.5 Polymer Degradation -- 2.5.1 Ceiling Temperature -- 2.5.2 Degradation of Vinyl Polymers -- 2.5.3 Degradation of Condensation Polymers -- References -- 3 Introduction to Polymer Rheology for Extrusion -- 3.1 Introduction to the Deformation of Materials -- 3.2 Introduction to Basic Concepts of Molecular Size -- 3.2.1 Size Distribution Example -- 3.2.2 Molecular Weight Distributions for Polymers -- 3.3 Basic Rheology Concepts -- 3.4 Polymer Solution Viscosity and Polymer Molecular Weight -- 3.4.1 Sample Calculation of Solution Viscosity -- 3.5 Introduction to Viscoelasticity -- 3.6 Measurement of Polymer Viscosity -- 3.6.1 Capillary Rheometers -- 3.6.2 Cone and Plate Rheometers -- 3.6.3 Melt Index and Melt Flow Rate. | |
505 | 8 | |a 3.7 Viscosity of Polymers as Functions of Molecular Character, Temperature, and Pressure -- 3.8 Historical Models for Non-Newtonian Flow -- 3.9 Power Law and Viscosity Shear Rate Dependence -- 3.9.1 Shear Stress from Newtonian to Infinite Shear -- 3.9.2 Viscosity as a Function of Shear Rate -- 3.9.3 The Power Law and Process Dissipation -- 3.9.4 Viscosity, Shear Rate, and Dissipation -- 3.9.5 Percolation in Structured Systems -- 3.9.6 Tube Flow Data and Data Analysis -- 3.9.7 Dispersion Based Power Law Constant n -- 3.9.8 Rheological Implictions for Extrusion and Molding Processes -- Nomenclature -- References -- 4 Resin Physical Properties Related to Processing -- 4.1 Bulk Density and Compaction -- 4.1.1 Measurement of Bulk Density -- 4.1.2 Measuring the Compaction Characteristics of a Resin -- 4.2 Lateral Stress Ratio -- 4.2.1 Measuring the Lateral Stress Ratio -- 4.3 Stress at a Sliding Interface -- 4.3.1 The Screw Simulator and the Measurement of the Stress at the Interface -- 4.4 Melting Flux -- 4.5 Heat Capacity -- 4.6 Thermal Conductivity and Heat Transfer -- 4.7 Melt Density -- Nomenclature -- References -- 5 Solids Conveying -- 5.1 Description of the Solids Conveying Process -- 5.2 Literature Review of Smooth-Bore Solids Conveying Models -- 5.2.1 Darnell and Mol Model -- 5.2.2 Tadmor and Klein Model -- 5.2.3 Clarkson University Models -- 5.2.4 Hyun and Spalding Model -- 5.2.5 Moysey and Thompson Model -- 5.3 Modern Experimental Solids Conveying Devices -- 5.3.1 Solids Conveying Devices at Clarkson University -- 5.3.2 The Solids Conveying Device at Dow -- 5.4 Comparison of the Modified Campbell-Dontula Model with Experimental Data -- 5.4.1 Solids Conveying Example Calculation -- 5.5 Grooved Bore Solids Conveying -- 5.5.1 Grooved Barrel Solids Conveying Models -- 5.6 Solids Conveying Notes -- Nomenclature -- References -- 6 The Melting Process. | |
505 | 8 | |a 6.1 Compression Ratio and Compression Rate -- 6.2 The Melting Process -- 6.2.1 The Melting Process as a Function of Screw Geometry -- 6.2.2 Review of the Classical Literature -- 6.2.3 Reevaluation of the Tadmor and Klein Melting Data -- 6.3 Theory Development for Melting Using Screw Rotation Physics -- 6.3.1 Melting Model for a Conventional Transition Section Using Screw Rotation Physics -- 6.3.2 Melting Models for Barrier Screw Sections -- 6.4 Effect of Pressure on Melting Rate -- 6.5 One-Dimensional Melting -- 6.5.1 One-Dimensional Melting Model -- 6.6 Solid Bed Breakup -- 6.7 Melting Section Characteristics -- Nomenclature -- References -- 7 Fluid Flow in Metering Channels -- 7.1 Introduction to the Reference Frame -- 7.2 Laboratory Observations -- 7.3 Literature Survey -- 7.4 Development of Linearized Flow Analysis -- 7.4.1 Example Flow Calculation -- 7.5 Numerical Flow Evaluation -- 7.5.1 Simulation of a 500 mm Diameter Melt-Fed Extruder -- 7.5.2 Extrusion Variables and Errors -- 7.5.3 Corrections to Rotational Flow -- 7.5.4 Simulation of the 500 mm Diameter Extruder Using Fc -- 7.6 Frame Dependent Variables -- 7.6.1 Example Calculation of Energy Dissipation -- 7.7 Viscous Energy Dissipation and Temperature of the Resin in the Channel -- 7.7.1 Energy Dissipation and Channel Temperature for Screw Rotation -- 7.7.2 Energy Dissipation and Channel Temperature for Barrel Rotation -- 7.7.3 Temperature Increase Calculation Example for a Screw Pump -- 7.7.4 Heat Transfer Coefficients -- 7.7.5 Temperature Calculation Using a Control Volume Technique -- 7.7.6 Numerical Comparison of Temperatures for Screw and Barrel Rotations -- 7.8 Metering Section Characteristics -- Nomenclature -- References -- 8 Mixing Processes for Single-Screw Extruders -- 8.1 Common Mixing Operations for Single-Screw Extruders -- 8.1.1 Common Mixing Applications. | |
505 | 8 | |a 8.2 Dispersive and Distributive Mixing Processes -- 8.3 Fundamentals of Mixing -- 8.3.1 Measures of Mixing -- 8.3.2 Experimental Demonstration of Mixing -- 8.4 The Melting Process as the Primary Mechanism for Mixing -- 8.4.1 Experimental Analysis of the Melting and Mixing Capacity of a Screw -- 8.4.2 Mixing and Barrier-Flighted Melting Sections -- 8.5 Secondary Mixing Processes and Devices -- 8.5.1 Maddock-Style Mixers -- 8.5.2 Blister Ring Mixers -- 8.5.3 Spiral Dam Mixers -- 8.5.4 Pin-Type Mixers -- 8.5.5 Knob Mixers -- 8.5.6 Gear Mixers -- 8.5.7 Dynamic Mixers -- 8.5.8 Static Mixers -- 8.6 Mixing Using Natural Resins and Masterbatches -- 8.7 Mixing and Melting Performance as a Function of Flight Clearance -- 8.8 High Pressures During Melting and Agglomerates -- 8.9 Effect of Discharge Pressure on Mixing -- 8.10 Shear Refinement -- 8.11 Direct Compounding Using Single-Screw Extruders -- Nomenclature -- References -- 9 Scaling of Single-Screw Extrusion Processes -- 9.1 Scaling Rules -- 9.2 Engineering Design Method for Plasticating Screws -- 9.2.1 Process Analysis and Simulations -- 9.3 Scale-Up from a 40 mm Diameter Extruder to an 80 mm Diameter Machine for a PE Resin -- 9.4 Rate Increase for an 88.9 mm Diameter Extruder Running a HIPS Resin -- Nomenclature -- References -- 10 Introduction to Troubleshooting the Extrusion Process -- 10.1 The Troubleshooting Process -- 10.2 Hypothesis Setting and Problem Solving -- 10.2.1 Case Study for the Design of a New Resin -- 10.2.2 Case Study for a Surface Blemish -- 10.2.3 Case Study for a Profile Extrusion Process -- 10.3 Equipment and Tools Needed for Troubleshooting -- 10.3.1 Maddock Solidification Experiment -- 10.4 Common Mechanical Problems -- 10.4.1 Flight Clearance and Hard Facing -- 10.4.2 Barrel and Screw Alignment -- 10.4.3 Extruder Barrel Supports -- 10.4.4 First-Time Installation of a Screw. | |
505 | 8 | |a 10.4.5 Screw Breaks -- 10.4.6 Protection from High-Pressure Events -- 10.4.7 Gearbox Lubricating Oil -- 10.4.8 Particle Seals and Viscoseals -- 10.4.9 Screw Cleaning -- 10.5 Common Electrical and Sensor Problems -- 10.5.1 Thermocouples -- 10.5.2 Pressure Sensors -- 10.5.3 Electronic Filters and Noise -- 10.6 Motors and Drive Systems -- 10.6.1 Motor Efficiencies and Power Factors -- 10.7 Typical Screw Channel Dimensions -- 10.8 Common Calculations -- 10.8.1 Energy Dissipated by the Screw -- 10.8.2 Screw Geometry Indices -- 10.9 Barrel Temperature Optimization -- 10.10 Screw Temperature Profile -- 10.11 The Screw Manufacturing and Refurbishing Process -- 10.12 Injection-Molding Plasticators -- 10.12.1 Calculations for Injection-Molding Plasticators -- 10.13 New Equipment Installations -- 10.13.1 Case Study: A Large Diameter Extruder Purchase -- 10.13.2 Case Study: Extruder and Line Purchase for a New Product -- 10.13.3 A High-Density Foamed Sheet Product -- 10.13.4 Summary for New Equipment Installations -- Nomenclature -- References -- 11 Contamination in the Finished Product -- 11.1 Foreign Contaminants in the Extrudate -- 11.1.1 Melt Filtration -- 11.1.2 Metal Fragments in the Extrudate -- 11.1.3 Gas Bubbles in a New Sheet Line -- 11.2 Gels in Polyolefin Resins -- 11.2.1 Protocols for Gel Analysis -- 11.3 Resin Decomposition in Stagnant Regions of a Process -- 11.3.1 Transfer Lines -- 11.4 Improper Shutdown of Processing Equipment -- 11.5 Equipment Purging -- 11.6 Oxygen Exclusion at the Hopper -- 11.7 Flight Radii Size -- 11.8 Drying the Resin -- 11.9 Color Masterbatches -- 11.10 Case Studies for Extrusion Processes with Contamination in the Product -- 11.10.1 Intermittent Crosslinked Gels in a Film Product -- 11.10.2 Small Gels in an LLDPE Film Product -- 11.10.3 Degassing Holes in Blow-Molded Bottles. | |
506 | |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty | ||
520 | |a Prior extrusion books are based on barrel rotation physics. This is the first book that focuses on the actual physics of the process - screw rotation physics. In the first nine chapters, theories and math models are developed. Then, these models are used to solve actual commercial problems in the remainder of the book. | ||
590 | |a Knovel |b Knovel (All titles) | ||
650 | 0 | |a Plastics |x Extrusion. | |
650 | 0 | |a Screw pumps. | |
655 | 7 | |a elektronické knihy |7 fd186907 |2 czenas | |
655 | 9 | |a electronic books |2 eczenas | |
700 | 1 | |a Spalding, Mark A., |e author. | |
856 | 4 | 0 | |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpATSSEE03/analyzing-and-troubleshooting?kpromoter=marc |y Full text |