Plastics industry 4.0 : potentials and applications in plastics technology

Provides insight into the development of the plastics industry in terms of digitalization and Industry 4.0. The background to these important topics is discussed along with provision of the prerequisite knowledge regarding process complexity and modeling as well as data acquisition to build the foun...

Full description

Saved in:
Bibliographic Details
Main Authors: Hopmann, Christian, (Author), Schmitz, Mauritius, (Author)
Format: eBook
Language: English
Published: Munich : Carl Hanser Verlag, [2021]
Subjects:
ISBN: 9781569907979
1569907978
9781569907962
Physical Description: 1 online resource : illustrations

Cover

Table of contents

LEADER 07563cam a2200409 i 4500
001 kn-on1227106560
003 OCoLC
005 20240717213016.0
006 m o d
007 cr cn|||||||||
008 201217s2021 gw a ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d OCLCO  |d OCLCF  |d YDX  |d SOE  |d OCLCQ  |d OCLCO  |d K6U  |d OCLCQ  |d OPELS  |d OCLCO  |d OCLCL  |d DXU  |d SXB 
020 |a 9781569907979  |q (electronic bk.) 
020 |a 1569907978  |q (electronic bk.) 
020 |z 9781569907962 
035 |a (OCoLC)1227106560 
100 1 |a Hopmann, Christian,  |e author. 
245 1 0 |a Plastics industry 4.0 :  |b potentials and applications in plastics technology /  |c Christian Hopmann, Mauritius Schmitz. 
264 1 |a Munich :  |b Carl Hanser Verlag,  |c [2021] 
264 2 |a Cincinnati, OH :  |b Hanser Publications 
300 |a 1 online resource :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
505 0 |a Intro -- Preface -- About the Authors -- Contents -- 1 Introduction -- 1.1 Potentials and Benefits of Industry 4.0 -- 1.2 Challenges for Successful Implementation of Industry 4.0 -- 2 Data Acquisition and Process Monitoring as Enabler for Industry 4.0 -- 2.1 The Necessity of Data Acquisition -- 2.1.1 Quality Control in the 1990s -- 2.1.2 Exemplary Fields of Application -- 2.2 Gaining Insights into the Process -- 2.2.1 Differentiation of Injection Molding Process Data -- 2.2.2 Economic Evaluation of the Injection Molding Process Based on Measurable Values -- 2.2.3 Process Data for Setup of a New Process -- 2.2.4 Process Control -- 2.2.4.1 Online Process Control -- 2.2.4.2 Process Control Concepts -- 2.3 Data Acquisition Methods -- 2.3.1 Material Properties for Digital Engineering -- 2.3.1.1 Thermal Properties of Plastic Melts -- 2.3.1.2 pvT-Behavior -- 2.3.1.3 Rheological Properties -- 2.3.1.4 Mechanical Properties -- 2.3.1.5 Applications of Data in Digital Engineering -- 2.3.2 Data Acquisition and Process Monitoring Methods -- 2.3.2.1 Temperature Measurement -- 2.3.2.2 Pressure Measurement -- 2.3.2.3 Electrical Pressure Measurement -- 2.3.2.4 Position Measurement -- 2.3.3 Humidity Measurement -- 2.3.4 Part Measurement -- 2.3.4.1 Part Measurement (Post-Mortem) -- 2.3.4.2 Optical Measurement -- 2.3.4.3 Tactile Measurement -- 2.3.5 Combination of Tactile and Optical Measurements -- 2.4 The Different Types of Quality Control -- 2.4.1 Offline Quality Control -- 2.4.2 Inline Quality Control -- 2.4.3 Online Quality Control -- 3 Cyber-Physical Systems -- 3.1 Computer Integrated Manufacturing as Conceptual Foundation for Cyber-Physical Production Systems -- 3.2 CPPS in Plastics Processing -- 3.3 Communication Capability of CPPS Components in Injection Molding -- 3.4 Planning and Realizing a CPPS in Plastics Processing. 
505 8 |a 4 Models and Artificial Intelligence -- 4.1 Model Quality -- 4.2 Three Different Categories of Models -- 4.2.1 Physical Models -- 4.2.2 Knowledge-Based Systems -- 4.2.3 Artificial Intelligence -- 4.2.3.1 AI Modeling Methods -- 4.2.3.2 Artificial Neural Networks (ANNs) -- 4.2.3.3 AI Modeling Examples in the Plastics Industry -- 5 Global Connectivity -- 5.1 Data Availability -- 5.2 Data Management -- 5.3 IT Infrastructure -- 5.3.1 Cloud Computing -- 5.3.2 Edge Computing -- 5.3.3 Hybrid System in Plastics Processing -- 5.4 Machine and Data Interfaces -- 5.4.1 Digital I/O -- 5.4.2 Analog I/O -- 5.4.3 Serial Interfaces -- 5.5 Data Systems -- 5.5.1 Introduction -- 5.5.2 Need for Data Processing -- 5.5.3 Development of Data Systems -- 5.5.4 Enterprise Resource Planning -- 5.5.5 Manufacturing Execution System -- 5.5.6 ERP/MES in the Plastics Processing Industry -- 5.5.7 Requirements for ERP/MES in the Context of Industry 4.0 -- 5.5.8 Developed Systems in Research -- 5.5.9 Used Systems in the Industry -- 5.5.9.1 SAP ERP -- 5.5.9.2 FEKOR MES -- 5.5.9.3 authenTIG -- 6 Digital Engineering -- 6.1 Introduction -- 6.1.1 Digital Materials -- 6.1.2 Material Modeling on the Nanoscopic Scale -- 6.1.3 Material Modeling on the Microscopic and Mesoscopic Scale -- 6.1.4 Material Models on the Macroscopic Scale -- 6.1.4.1 Isotropic Linear-Elastic Behavior -- 6.1.4.2 Orthotropic Linear-Elastic Behavior -- 6.1.4.3 Hyperelastic Behavior -- 6.1.4.4 Anisotropic Hyperelastic Behavior -- 6.1.4.5 Plastic Material Models -- 6.1.4.6 Viscoelasticity -- 6.1.4.7 Damage Model for Dynamic Load -- 6.2 Process Simulation -- 6.2.1 Setting up Injection Molding Simulation -- 6.2.2 Design and Optimization Using Injection Molding Simulation -- 6.3 Result Analysis and Mapping -- 6.3.1 Calculation of Mechanical Properties Based on Local Microstructure -- 6.3.2 Weld Lines. 
505 8 |a 6.3.3 Elastomers: Considering Crosslinking Level in Structural Simulation -- 6.3.4 Thermoplastic Elastomers: Determination of Elastomer Particle Size -- 6.4 Part Simulation -- 6.5 Artificial Neural Networks in Virtual Process Development -- 7 Complex Value Chain -- 7.1 Introduction to Complex Value Chains -- 7.2 Shop Floor Management -- 7.2.1 Lean Management -- 7.2.2 Key Figures for Plastics Processing -- 7.2.3 Shop Floor Management in the Context of Industry 4.0 -- 7.2.4 Asset Identification -- 7.2.4.1 Identification, Tracking, and Tracing of Assets -- 7.2.4.2 Technical Solutions of Asset Identification -- 7.2.4.3 Plastic-Related RFID Research Projects -- 7.2.5 Warehouse Management -- 7.2.6 Logistics 4.0 -- 7.2.7 Equipment Management -- 7.3 Examples of Complex Value Chains in Plastics Processing -- 7.3.1 Model-Based Setup of Injection Molding Processes -- 7.3.2 Producing Multiple Variants in a Production Cell -- 8 Assistant Systems -- 8.1 Requirements and Functionalities Regarding Assistant Systems -- 8.2 Simulation-Based Assistance for Process Setup -- 8.3 Predictive Maintenance -- 8.3.1 Maintenance Routines -- 8.3.2 Predictive Maintenance in Injection Molding -- 8.3.2.1 Predictive Maintenance for Injection Molding Machines -- 8.3.2.2 Predictive Maintenance for Injection Molds -- 8.4 Augmented Reality and Virtual Reality as Visual Support -- 8.4.1 Definition and Demarcation of Terms -- 8.4.2 State of the Art -- 8.4.3 Industry 4.0 and Augmented Reality -- 8.5 Commercially Available Tools -- 8.5.1 Engel iQ Control Systems for Process Support in Injection Molding -- 8.5.2 ARBURG Continuous Quality Control with the CQC System -- 8.5.3 KraussMaffei Adaptive Process Control to Deal with Material Fluctuations -- 8.5.4 Sumitomo Enhanced Machine Efficiency with ActivePlus -- 8.5.5 Process Optimization with STASA QC -- Index. 
506 |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty 
520 |a Provides insight into the development of the plastics industry in terms of digitalization and Industry 4.0. The background to these important topics is discussed along with provision of the prerequisite knowledge regarding process complexity and modeling as well as data acquisition to build the foundation of data driven digital processes. 
590 |a Knovel  |b Knovel (All titles) 
650 0 |a Plastics  |x Technological innovations. 
650 0 |a Plastics industry and trade. 
655 7 |a elektronické knihy  |7 fd186907  |2 czenas 
655 9 |a electronic books  |2 eczenas 
700 1 |a Schmitz, Mauritius,  |e author. 
856 4 0 |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpPIPAPT02/plastics-industry-40?kpromoter=marc  |y Full text