Hands-On Vision and Behavior for Self-Driving Cars : Explore Visual Perception, Lane Detection, and Object Classification with Python 3 and OpenCV 4.

This book will give you insights into the technologies that drive the autonomous car revolution. To get started, all you need is basic knowledge of computer vision and Python.

Saved in:
Bibliographic Details
Main Author: Venturi, Luca.
Other Authors: Korda, Krishtof.
Format: eBook
Language: English
Published: Birmingham : Packt Publishing, Limited, 2020.
Subjects:
ISBN: 1800201931
9781800201934
9781800203587
Physical Description: 1 online resource (374 pages)

Cover

Table of contents

LEADER 05120cam a2200445 i 4500
001 kn-on1202456840
003 OCoLC
005 20240717213016.0
006 m o d
007 cr cn|||||||||
008 201031s2020 enk o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d UKAHL  |d UKMGB  |d OCLCO  |d YDX  |d OCLCF  |d N$T  |d EBLCP  |d VLB  |d OCLCO  |d OCLCQ  |d ZCU  |d OCLCQ  |d OCLCO  |d OCLCL 
020 |a 1800201931 
020 |a 9781800201934  |q (electronic bk.) 
020 |z 9781800203587  |q (pbk.) 
035 |a (OCoLC)1202456840  |z (OCoLC)1202224810  |z (OCoLC)1202478593 
100 1 |a Venturi, Luca. 
245 1 0 |a Hands-On Vision and Behavior for Self-Driving Cars :  |b Explore Visual Perception, Lane Detection, and Object Classification with Python 3 and OpenCV 4. 
260 |a Birmingham :  |b Packt Publishing, Limited,  |c 2020. 
300 |a 1 online resource (374 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty 
520 |a This book will give you insights into the technologies that drive the autonomous car revolution. To get started, all you need is basic knowledge of computer vision and Python. 
505 0 |a Cover -- Copyright -- About PACKT -- Contributors -- Table of Contents -- Preface -- Section 1: OpenCV and Sensors and Signals -- Chapter 1: OpenCV Basics and Camera Calibration -- Technical requirements -- Introduction to OpenCV and NumPy -- OpenCV and NumPy -- Image size -- Grayscale images -- RGB images -- Working with image files -- Working with video files -- Working with webcams -- Manipulating images -- Flipping an image -- Blurring an image -- Changing contrast, brightness, and gamma -- Drawing rectangles and text -- Pedestrian detection using HOG -- Sliding window 
505 8 |a Using HOG with OpenCV -- Introduction to the camera -- Camera terminology -- The components of a camera -- Considerations for choosing a camera -- Strengths and weaknesses of cameras -- Camera calibration with OpenCV -- Distortion detection -- Calibration -- Summary -- Questions -- Chapter 2: Understanding and Working with Signals -- Technical requirements -- Understanding signal types -- Analog versus digital -- Serial versus parallel -- Universal Asynchronous Receive and Transmit (UART) -- Differential versus single-ended -- I2C -- SPI -- Framed-based serial protocols -- Understanding CAN 
505 8 |a Ethernet and internet protocols -- Understanding UDP -- Understanding TCP -- Summary -- Questions -- Further reading -- Open source protocol tools -- Chapter 3: Lane Detection -- Technical requirements -- How to perform thresholding -- How thresholding works on different color spaces -- RGB/BGR -- HLS -- HSV -- LAB -- YCbCr -- Our choice -- Perspective correction -- Edge detection -- Interpolated threshold -- Combined threshold -- Finding the lanes using histograms -- The sliding window algorithm -- Initialization -- Coordinates of the sliding windows -- Polynomial fitting -- Enhancing a video 
505 8 |a Partial histogram -- Rolling average -- Summary -- Questions -- Section 2: Improving How the Self-Driving Car Works with Deep Learning and Neural Networks -- Chapter 4: Deep Learning with Neural Networks -- Technical requirements -- Understanding machine learning and neural networks -- Neural networks -- Neurons -- Parameters -- The success of deep learning -- Learning about convolutional neural networks -- Convolutions -- Why are convolutions so great? -- Getting started with Keras and TensorFlow -- Requirements -- Detecting MNIST handwritten digits -- What did we just load? 
505 8 |a Training samples and labels -- One-hot encoding -- Training and testing datasets -- Defining the model of the neural network -- LeNet -- The code -- The architecture -- Training a neural network -- CIFAR-10 -- Summary -- Questions -- Further reading -- Chapter 5: Deep Learning Workflow -- Technical requirements -- Obtaining the dataset -- Datasets in the Keras module -- Existing datasets -- Your custom dataset -- Understanding the three datasets -- Splitting the dataset -- Understanding classifiers -- Creating a real-world dataset -- Data augmentation -- The model -- Tuning convolutional layers 
590 |a Knovel  |b Knovel (All titles) 
650 0 |a Automated vehicles  |x Computer programs. 
650 0 |a Computer vision. 
650 0 |a Python (Computer program language) 
650 0 |a OpenCV (Computer program language) 
655 7 |a elektronické knihy  |7 fd186907  |2 czenas 
655 9 |a electronic books  |2 eczenas 
700 1 |a Korda, Krishtof. 
776 0 8 |i Print version:  |a Venturi, Luca.  |t Hands-On Vision and Behavior for Self-Driving Cars : Explore Visual Perception, Lane Detection, and Object Classification with Python 3 and OpenCV 4.  |d Birmingham : Packt Publishing, Limited, ©2020  |z 9781800203587 
856 4 0 |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpHOVBSDC1/hands-on-vision?kpromoter=marc  |y Full text