Machine learning and big data : concepts, algorithms, tools and applications
"Machine learning with big data technologies create new opportunities to understand the various data process related to medical or environmental aspects of agriculture. Machine learning as a field is now incredibly pervasive, with applications spanning from business intelligence to homeland sec...
Saved in:
Other Authors: | , , |
---|---|
Format: | eBook |
Language: | English |
Published: |
Hoboken, NJ :
Wiley-Scrivener,
2020.
|
Subjects: | |
ISBN: | 1119654793 9781119654810 1119654815 9781119654834 1119654831 9781119654797 9781119654742 1119654742 |
Physical Description: | 1 online resource |
LEADER | 06251cam a22005298i 4500 | ||
---|---|---|---|
001 | kn-on1193559419 | ||
003 | OCoLC | ||
005 | 20240717213016.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 200901t20202020nju ob 001 0 eng | ||
040 | |a DLC |b eng |e rda |e pn |c DLC |d OCLCO |d DG1 |d OCLCF |d UKMGB |d NLW |d N$T |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
020 | |a 1119654793 | ||
020 | |a 9781119654810 |q (adobe pdf) | ||
020 | |a 1119654815 | ||
020 | |a 9781119654834 |q (electronic bk.) | ||
020 | |a 1119654831 |q (electronic bk.) | ||
020 | |a 9781119654797 |q (electronic bk.) | ||
020 | |z 9781119654742 |q (hardback) | ||
020 | |z 1119654742 | ||
035 | |a (OCoLC)1193559419 |z (OCoLC)1198092075 | ||
042 | |a pcc | ||
245 | 0 | 0 | |a Machine learning and big data : |b concepts, algorithms, tools and applications / |c edited by Uma N. Dulhare, Khaleel Ahmad, Khairol Amali Bin Ahmad. |
264 | 1 | |a Hoboken, NJ : |b Wiley-Scrivener, |c 2020. | |
264 | 4 | |c ©2020 | |
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references and index. | ||
506 | |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty | ||
520 | |a "Machine learning with big data technologies create new opportunities to understand the various data process related to medical or environmental aspects of agriculture. Machine learning as a field is now incredibly pervasive, with applications spanning from business intelligence to homeland security from analyzing biochemical interactions to structural monitoring of aging bridges, and from emissions to astrophysics, etc. As we are entering the Industrial Revolution 4.0, BD/ML applications, in combination with IoT/Cloud technologies, are fundamentally changing any domain-specific industry. Development of this field is very important because it can help to enhance human life by the automation system, which in turn has far-reaching effects for economic, psychological, educational and organizational improvements to the way we work, teach, learn and care for ourselves and each other"-- |c Provided by publisher | ||
505 | 0 | |a Preface xix Section 1: Theoretical Fundamentals 1 1 Mathematical Foundation 3; Afroz and Basharat Hussain 1.1 Concept of Linear Algebra 3 1.1.1 Introduction 3 1.1.2 Vector Spaces 5 1.1.3 Linear Combination 6 1.1.4 Linearly Dependent and Independent Vectors 7 1.1.5 Linear Span, Basis and Subspace 8 1.1.6 Linear Transformation (or Linear Map) 9 1.1.7 Matrix Representation of Linear Transformation 10 1.1.8 Range and Null Space of Linear Transformation 13 1.1.9 Invertible Linear Transformation 15 1.2 Eigenvalues, Eigenvectors, | |
505 | 0 | |a And Eigendecomposition of a Matrix 15 1.2.1 Characteristics Polynomial 16 1.2.1.1 Some Results on Eigenvalue 16 1.2.2 Eigendecomposition 18 1.3 Introduction to Calculus 20 1.3.1 Function 20 1.3.2 Limits of Functions 21 1.3.2.1 Some Properties of Limits 22 1.3.2.2 1nfinite Limits 25 1.3.2.3 Limits at Infinity 26 1.3.3 Continuous Functions and Discontinuous Functions 26 1.3.3.1 Discontinuous Functions 27 1.3.3.2 Properties of Continuous Function 27 1.3.4 Differentiation 28 References 29 2 Theory of Probability 31; Parvaze Ahmad Dar and Afroz 2.1 Introduction 31 2.1.1 Definition 31 2.1.1.1 Statistical Definition of Probability 31 2.1.1.2 Mathematical Definition of Probability 32 2.1.2 Some Basic Terms of Probability 32 2.1.2.1 Trial and Event 32 2.1.2.2 Exhaustive Events (Exhaustive Cases) 33 2.1.2.3 Mutually | |
505 | 0 | |a One Variable Gaussian) 50 2.6.1.2 Degenerate Univariate Gaussian 51 2.6.1.3 Multivariate Gaussian 51 References 51 3 Correlation and Regression 53; Mohd. Abdul Haleem Rizwan 3.1 Introduction 53 3.2 Correlation 54 3.2.1 Positive Correlation and Negative Correlation 54 3.2.2 Simple Correlation and Multiple Correlation 54 3.2.3 Partial Correlation and Total Correlation 54 3.2.4 Correlation Coefficient 55 3.3 Regression 57 3.3.1 Linear Regression 64 3.3.2 Logistic Regression 64 3.3.3 Polynomial Regression 65 3.3.4 Stepwise Regression 66 3.3.5 Ridge Regression 67 3.3.6 Lasso Regression 67 3.3.7 Elastic Net Regression 68 3.4 Conclusion 68 References 69 Section 2: Big Data and Pattern Recognition 71 4 Data Preprocess 73; Md. | |
505 | 0 | |a Of Things 121 5.6.11 Weather Forecasting 121 5.7 Where IoT Meets Big Data 122 5.7.1 IoT Platform 122 5.7.2 Sensors or Devices 123 5.7.3 Device Aggregators 123 5.7.4 IoT Gateway 123 5.7.5 Big Data Platform and Tools 124 5.8 Role of Machine Learning For Big Data and IoT 124 5.8.1 Typical Machine Learning Use Cases 125 5.9 Conclusion 126 References 127 6 Pattern Recognition Concepts 131; Ambeshwar Kumar, R. Manikandan and C. | |
505 | 0 | |a Thaventhiran 6.1 Classifier 132 6.1.1 Introduction 132 6.1.2 Explanation-Based Learning 133 6.1.3 Isomorphism and Clique Method 135 6.1.4 Context-Dependent Classification 138 6.1.5 Summary 139 6.2 Feature Processing 140 6.2.1 Introduction 140 6.2.2 Detection and Extracting Edge With Boundary Line 141 6.2.3 Analyzing the Texture 142 6.2.4 Feature Mapping in Consecutive Moving Frame 143 6.2.5 Summary 145 6.3 Clustering 145 6.3.1 Introduction 145 6.3.2 Types of Clustering Algorithms 146 6.3.2.1 Dynamic Clustering Method 148 6.3.2.2 Model-Based Clustering 148 6.3.3 Application 149 6.3.4 Summary 150 6.4 Conclusion 151 References 151 Section 3: Machine Learning: Algorithms & Applications 153 7 Machine Learning 155; Elham Ghanbari and Sara Najafzadeh 7.1 History and Purpose of Machine Learning | |
590 | |a Knovel |b Knovel (All titles) | ||
650 | 0 | |a Machine learning. | |
650 | 0 | |a Big data. | |
655 | 7 | |a elektronické knihy |7 fd186907 |2 czenas | |
655 | 9 | |a electronic books |2 eczenas | |
700 | 1 | |a Dulhare, Uma N., |e editor. | |
700 | 1 | |a Ahmad, Khaleel, |e editor. | |
700 | 1 | |a Khairol Amali Bin Ahmad, |e editor. | |
776 | 0 | 8 | |i Print version: |t Machine learning and big data. |d Hoboken, NJ : Wiley-Scrivener, 2020 |z 9781119654742 |w (DLC) 2020031697 |
856 | 4 | 0 | |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpMLBDCAT1/machine-learning-and?kpromoter=marc |y Full text |