Machine learning in chemistry : the impact of artificial intelligence

This book provides practical examples of machine learning applied to science to help researchers make an informed choice about using the method in chemistry.

Saved in:
Bibliographic Details
Other Authors: Cartwright, Hugh M., 1948- (Editor)
Format: eBook
Language: English
Published: London : Royal Society of Chemistry, 2020.
Series: Theoretical and computational chemistry ; 17.
Subjects:
ISBN: 9781839160233
1839160233
9781839160240
1839160241
9781788017893
1788017897
Physical Description: 1 online resource

Cover

Table of contents

LEADER 03582cam a2200433 i 4500
001 kn-on1179002329
003 OCoLC
005 20240717213016.0
006 m o d
007 cr cn|||||||||
008 200729s2020 enk ob 001 0 eng d
040 |a UKRSC  |b eng  |e rda  |e pn  |c UKRSC  |d N$T  |d YDX  |d EBLCP  |d UKAHL  |d YDXIT  |d UKMGB  |d OCLCF  |d OCLCQ  |d AFU  |d MFS  |d OCLCO  |d AAA  |d OCLCO  |d OCLCQ  |d K6U  |d OCLCQ  |d OCLCO  |d OCLCL 
020 |a 9781839160233  |q (electronic book) 
020 |a 1839160233  |q (electronic book) 
020 |a 9781839160240  |q (electronic book) 
020 |a 1839160241  |q (electronic book) 
020 |z 9781788017893 
020 |z 1788017897 
035 |a (OCoLC)1179002329  |z (OCoLC)1190850717 
245 0 0 |a Machine learning in chemistry :  |b the impact of artificial intelligence /  |c edited by Hugh M. Cartwright. 
264 1 |a London :  |b Royal Society of Chemistry,  |c 2020. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Theoretical and computational chemistry ;  |v 17 
504 |a Includes bibliographical references and index. 
505 0 |a Computers as scientists -- How do machines learn? -- MedChemInformatics: an introduction to machine learning for drug discovery -- Machine learning for nonadiabatic molecular dynamics -- Machine learning in science-a role for mechanic sympathy? -- A prediction of future states: AI-powered chemical innovation for defense applications -- Machine learning for chemical synthesis -- Constraining chemical networks in astrochemistry -- Machine learning at he (nano)materials-biology interface -- Machine learning techniques applied to a complex polymerization process -- machine learning and scoring functions (SFs) for molecular drug discovery: prediction and characterisation of druggable drugs and targets -- Artificial intelligence applied to the prediction of organic materials -- A new era of inorganic materials discovery powered by data science -- Machine learning application sin chemical engineering -- representation learning in chemistry -- Demystifying artificial neural networks as generators of new chemical knowledge: antimalarial drug discovery as a case study -- Machine learning for core-loss spectrum -- Autonomous science: big data tools for small data problems in chemistry -- Machine learning for heterogeneous catalysis: global neural network potential from construction to applications -- A few guiding principles for practical applications of machine learning to chemistry and materials. 
506 |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty 
520 |a This book provides practical examples of machine learning applied to science to help researchers make an informed choice about using the method in chemistry. 
590 |a Knovel  |b Knovel (All titles) 
650 0 |a Chemistry  |x Data processing. 
650 0 |a Machine learning. 
655 7 |a elektronické knihy  |7 fd186907  |2 czenas 
655 9 |a electronic books  |2 eczenas 
700 1 |a Cartwright, Hugh M.,  |d 1948-  |e editor.  |1 https://id.oclc.org/worldcat/entity/E39PCjCDf8qmw4p7hTG3pqD7BP 
776 0 8 |i Print version:  |t Machine learning in chemistry.  |d Cambridge : Royal Society of Chemistry, 2020  |z 9781788017893  |w (OCoLC)1173575313 
830 0 |a Theoretical and computational chemistry ;  |v 17. 
856 4 0 |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpMLCTIAI1/machine-learning-in?kpromoter=marc  |y Full text